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Introduction and Motivation

Some history

• Began as a senior thesis project during Undergrad at Princeton.

• Advised by Shivaji Sondhi (Princeton) and Mari Carmen Banuls (MPQ).

• Motivated by arguments published by Nandkishore and Sondhi (PRX 2017)
[1].
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Introduction and Motivation

Motivation

• Many-body localized systems fail to come to equilibrium despite interactions
[2, 3, 4, 5].

• Conventional folklore says long range interactions kill MBL.

• Schwinger model describes qed in 1+1d (with long-range interactions) [6].

• Yet, [1] argued that the disordered massless Schwinger model would display
MBL.
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Introduction and Motivation

Summary of argument

L = ψ̄/∂ψ− e0j
µAµ +

1

2
(εµν∂µAν)

2 (1)

• Exactly solvable and describes a theory of non-interacting bosons.

L =
1

2
(∇φ)2 +

e20
π

φ2 (2)

• [1] considers the disordered (with a random chemical potential) continuum
massless Schwinger model. They show, by bosonization, that the system, to
leading order, describes gapped bosons, known to localize.

• Goal: investigate lattice formulation (where there is no analytic solution via
bosonization), where commensurate effects are also present [7].

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 5 / 22



Introduction and Motivation

Summary of argument

L = ψ̄/∂ψ− e0j
µAµ +

1

2
(εµν∂µAν)

2 (1)

• Exactly solvable and describes a theory of non-interacting bosons.

L =
1

2
(∇φ)2 +

e20
π

φ2 (2)

• [1] considers the disordered (with a random chemical potential) continuum
massless Schwinger model. They show, by bosonization, that the system, to
leading order, describes gapped bosons, known to localize.

• Goal: investigate lattice formulation (where there is no analytic solution via
bosonization), where commensurate effects are also present [7].

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 5 / 22



Introduction and Motivation

Summary of argument

L = ψ̄/∂ψ− e0j
µAµ +

1

2
(εµν∂µAν)

2 (1)

• Exactly solvable and describes a theory of non-interacting bosons.

L =
1

2
(∇φ)2 +

e20
π

φ2 (2)

• [1] considers the disordered (with a random chemical potential) continuum
massless Schwinger model. They show, by bosonization, that the system, to
leading order, describes gapped bosons, known to localize.

• Goal: investigate lattice formulation (where there is no analytic solution via
bosonization), where commensurate effects are also present [7].

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 5 / 22



Introduction and Motivation

Summary of argument

L = ψ̄/∂ψ− e0j
µAµ +

1

2
(εµν∂µAν)

2 (1)

• Exactly solvable and describes a theory of non-interacting bosons.

L =
1

2
(∇φ)2 +

e20
π

φ2 (2)

• [1] considers the disordered (with a random chemical potential) continuum
massless Schwinger model. They show, by bosonization, that the system, to
leading order, describes gapped bosons, known to localize.

• Goal: investigate lattice formulation (where there is no analytic solution via
bosonization), where commensurate effects are also present [7].

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 5 / 22



Lattice models

How to regularize?

The continuum Hamiltonian formulation in the temporal gauge [8]

H =
∫

dx{Ψ̄[iγ1∂1 + eγ1A1 + µ(x)]Ψ +
1

2
E2} (3)

→ H =
−i
2a ∑

n

(φ†
ne

iθnφn+1 − h.c .) +
ag2

2 ∑
n

L2n (4)

• Kogut-Susskind staggered (SB) potential (CR) ⇐⇒ (2CCP)

Ln − Ln−1 = φ†
nφn −

1

2
[1− (−1)n] 〈φ†

nφn〉 = n mod 2 (5)

• Translationally invariant potential (SR) ⇐⇒ (1CCP)

Ln − Ln−1 = φ†
nφn − 1/2 〈φ†

nφn〉 = 0 (6)

• Jordan-Wigner-ize φn → ∏m<n(iσ
z
m)σ

−
n , φ†

nφn → 1
2 (σ

z + 1)
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Lattice models

Lattice Hamiltonian

H = xHhop + λHint +
1

2

N−1
∑
n=0

V (n)σz
n V (n) ∈ [−θ, θ] (7)

(
∑
n

σz
n

)
|j〉 = 0 (8)
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Numerical Results Symmetry breaking in the symmetric regularization

Fourier-transformed density-density correlations (N = 12)

ρn(k) =
N−1
∑
r=0

〈σz
0σz

r 〉ne ikr (9)

States calculated by E.D. for N = 12, Lanczos’ algorithm for higher N.

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 8 / 22



Numerical Results Symmetry breaking in the symmetric regularization

Fourier-transformed density-density correlations (N = 12)

ρn(k) =
N−1
∑
r=0

〈σz
0σz

r 〉ne ikr (10)

States calculated by E.D. for N = 12, Lanczos’ algorithm for higher N.

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 9 / 22



Numerical Results Symmetry breaking in the symmetric regularization

Fourier-transformed density-density correlations (N = 12)

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 10 / 22



Numerical Results Symmetry breaking in the symmetric regularization

Fourier-transformed density-density correlations (N = 100)

ρn(k) =
N−1
∑
r=0

〈σz
0σz

r 〉ne ikr (11)

States calculated using iterative ground state search in DMRG. Excited states
calculated via penalty, as described in [8].
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Numerical Results Symmetry breaking in the symmetric regularization

Fourier-transformed density-density correlations (N = 100)
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Numerical Results Symmetry breaking in the symmetric regularization

Violation of Imry-Ma Theorem??

• Imry-Ma theorem says that SSB is unstable to (arbitrarily weak) random-field
disorder in d = 1.

Consider two domains of size ` separated by domain wall. Gain: ∼ `0

Loss: ∼ `1/2.

• But SSB in MS (in SR) corresponds to a charge density wave with period
two!

A “domain wall” (soliton) is switching between even and odd filling,
binding a charge.
Because of the long-range interaction, a domain wall of length ` costs
energy ∼ ` >

√
`.

• Long range order survives.

The classical 1CCP develops long-range crystalline order at any
temperature as well.
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Numerical Results Ergodicity breaking in the low-energy Hilbert space

What is the level statistics ratio?

r̃i =
min(Ei+2 − Ei+1,Ei+1 − Ei )

max(Ei+2 − Ei+1,Ei+1 − Ei )
(12)

〈r̃〉GOE = 0.5314 (13)

〈r̃〉Poisson = 0.3836 (14)

• Invariant to linear transformations on H and basis change.

• What gives? GOE obey Wigner statistics i.e. level repulsion and spectral
rigidity. Localized systems obey Poisson statistics [9].

• Generic Hamiltonians are pretty close to GOE. Bohigas Giannoni Schmit
conjecture [10] says

Spectra of time reversal-invariant systems whose classical analogues are
K systems show the same fluctuation properties as predicted by GOE.
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Numerical Results Ergodicity breaking in the low-energy Hilbert space

Level statistics

Figure: Window size is 100 energies. Note θ = 0 statistics are far from ergodic. Also,
note ergodicity breaking at low energies when we turn on disorder. We speculate this
may be because of proximity to an integrable point (the clean continuum Schwinger
model). Level crossings in the clean model support this hypothesis.
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Numerical Results Ergodicity breaking in the low-energy Hilbert space

Level crossings

Since ξ ≈ 20 according to [1], we must probe larger system sizes.
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Numerical Results Localization at low energies

Density imbalance (CR)

Figure: Localization length shrinks as disorder strength increases. The elementary
excitations are charge neutral (dipoles). Parameter regime: x >> θ ∼ λ.

τ(n) = 〈ψ1| σz
n |ψ1〉 − 〈ψ0| σz

n |ψ0〉 (15)
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Numerical Results Localization at low energies

Density imbalance (CR)

A. A. Akhtar (UCSD) MBL and SSB in massless Schwinger December 14, 2018 18 / 22



Numerical Results Localization at low energies

Density imbalance (SR)
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Numerical Results Localization at low energies

Bilocalized states
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Numerical Results Localization at low energies

Localization length scaling

Figure: Comparisons with the predicted localization length of [1].
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Concluding remarks

Summary

• The symmetric regularization exhibits spontaneous symmetry breaking. This
spontaneous symmetry breaking survives the addition of disorder, with the
Imry-Ma theorem being evaded due to the long-range interaction.

• Simulations with N = 100 spins confirms that the first excited state contains
a localized excitation, the localization length of which decreases with
increasing disorder strength.

• More questions:

What happens in other parameter regimes?
What happens at higher energies?
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