
A Practical Introduction to Quantum Many-Body Simulation

and Matrix Product States

Ahmed Akhtar
Prof. Nicolas Regnault

May 3, 2016

Abstract

This paper offers a practical introduction to numerical techniques in Quantum Many-Body sim-
ulation. We cover exact diagonalization examples for the Heisenberg and AKLT models. We also
cover the Matrix Product State representation of the AKLT ground state. The paper also discusses
theoretical details behind MPS and how it can be used to efficiently calculate physical quantities of
a system.

1 Introduction

One does not have to know a lot of Quantum Mechanics to understand that Hilbert spaces can
get big very, very quickly. Consider a system of N interacting spin-half particles. Without any
additional assumption, each state of the system lives in a Hilbert space H with dimension dimH
that goes like 2N . This is because each particle can be in either the +~/2 or −~/2 eigenstate of the
z-angular momentum operator Sz.

dimH = 2N (1)

In general, the dimension of the Hilbert space of a lattice of N spin s particles is

dimH = (2s+ 1)N (2)

This is the heart of the problem in condensed matter simulations of spin-systems. If we want
to represent the exact state of a system numerically, memory and time scale exponentially. If the
system size was small, this wouldn’t be much of a problem. For example, finding the eigenstates
of the AKLT-Hamiltonian (Affleck, Lieb, Kennedy and Tasaki) for N = 8 is not too difficult com-
putationally even on a laptop, but what about for N = 100, 1000, 10000? Often-times we want to
simulate large systems. If we were restricted to exponential algorithms, simulating large systems
would be impossible.

Matrix product states (MPS) are a feasible method for representing the states of a variety of
systems, including the AKLT-model, which is an extension of the Heisenberg model. Each model
comprises of a spin chain, or a 1d lattice, of N sites, with each site occupied by a particle with a
finite state space of dimension d. In the Heisenberg model, we imagine a spin chain of N spin-half
particles (d = 2). In the AKLT-model, we imagine a spin chain of N spin-one particles (d = 3).
MPS provides a way to calculate a number of important system variables (e.g. ground state energy,
correlation length, overlaps, etc.) in time linear in N, d with a high degree of accuracy. As such,
MPS has a wide array of applications in condensed matter simulations1.

What about 2d lattices or 3d lattices of spin particles? The natural generalization of the Matrix
Product State is the tensor network. While this paper only discusses spin chains, the concepts and
implementations could be generalized to higher dimensions.

A number of factors play a role in whether an efficient MPS representation of the ground state
exists in a particular system. MPS relies on the system having little entanglement between the
different parts of the system. As we will see, for the AKLT-spin chain, the Von Neumann Entropy
has a finite upper bound. This is an example of the area law, which suggests that the Von Neumann
entropy of the reduced density matrix of some subvolume of a system is proportional to the surface
area of the subvolume. It was also shown that for a 1d system with a finite gap2 (i.e. a finite
energy difference between the ground state and the excited state as N → ∞), its ground state has
an efficient MPS description. The AKLT model is also an example of a system with a finite gap [4].

This paper will explore simulations using exact diagonalization, where we generate the Hamil-
tonian and then diagonalize to find the energy spectrum, and also MPS, where we write the state
as its matrix product representation. The codes used to implement each calculation are included
in the appendix and will occasionally be referenced in the paper. This is a practical introduction
to quantum many-body simulations, so programming is a large part of the work completed in this
paper. The language used is Python. NumPy classes were used for the linear algebra aspects of the
code. MatPlotLib was used for plotting the data.

This paper will also discuss the Von Neumann Entropy, which is a measure of the entanglement
in a system. We will consider some of the theory behind MPS, involving reduced density operators
and Schmidt decomposition. We will conclude the paper with how MPS can be used to efficiently

1See [2], [3].
2Also known as a Haldane gap.

1

compute the squared norm of a vector |Ψ〉. This is a remarkable example of how MPS can be used
to circumvent the fact that Hilbert spaces grows exponentially with system size N .

2

2 The Heisenberg Hamiltonian and Straightforward Simula-
tions

Figure 1: The first 9 sites in a spin chain consisting of spin-half particles.

To get an introduction to numerical calculations on spin chains, we will first study the Heisenberg
Hamiltonian. Suppose that you have a spin chain with N sites. At each site, labeled 0 to N − 1,
there is a spin-half particle. Thus, the size of the Hilbert space is dimH = 2N . Suppose that the
z-spin angular momentum operator of the particle at site i is represented as Siz. Then the Heisenberg
Hamiltonian is given by

H =

N−2∑
i=0

SixS
i+1
x + SiyS

i+1
y + SizS

i+1
z (3)

The notation here can be simplified by defining ~Si as the collection of operators (Six, S
i
y, S

i
z).

Using this notation, the above Hamiltonian becomes

H =

N−2∑
i=0

~Si · ~Si+1 (4)

We will find the energy spectrum, or the eigenvalues of the Hamiltonian, by first constructing
the Hamiltonian as a matrix. Then we will use Python’s NumPy linear algebra classes to calculate
the eigenvalues. Note that this algorithm is fundamentally exponential, because there are d2 = 4n

elements of the Hamiltonian. Although it is not necessary to actually calculate every element of the
Hamiltonian, since as we will see the Hamiltonians we discuss in this paper are sparse and can be
made block-diagonal in the appropriate basis, calculating the non-zero terms still goes exponentially.
This will be an issue for large sized systems, but to get an idea of what numerical computations
are like we can proceed with this example. We will find that the implementation of the Heisenberg
Hamiltonian is very similar to the implementation of the AKLT Hamiltonian, for which we will
construct the matrix product states.

To compute that elements of H, we need a way to compute 〈i|H |j〉 ≡ Hij without already
knowing the matrix elements. But first, we need a representation of |i〉. What are the state vectors
of a spin-half chain?

The state at each site can be described completely by a pair of numbers s and m, where s is the
intrinsic spin at each site and m is the Sz eigenvalue. In this case, s = 1/2 and3 m = ±1/2. Thus,
we can write the local basis vectors as | 12

1
2 〉 for m = 1/2 and | 12 −

1
2 〉 for m = −1/2. The basis

vectors of the whole system are given by the direct product of the basis vectors at one site. If we
write the state at each site in terms of the Sz eigenvectors, we can write an arbitrary basis element
of the system as

|1
2
m0〉 ⊗ |

1

2
m1〉 ...⊗ |

1

2
mN−1〉 (5)

where mi = ±1/2 represents the Sz eigenvalue at the i-th site. To simplify this notation, we can
write the m = −1/2 local basis state as |0〉 and the m = 1/2 local basis state as |1〉 and drop the
tensor product symbol. This allows us to view each state as a binary integer.

3As usual, we leave out the ~. In most numerical calculations on quantum systems, ~ is taken to be 1.

3

|00010010...01〉 (6)

All 2N consecutive integers from 00...0 to 11...1, written in binary, map bijectively to the set of
basis states of the system. Thus, to simplify our notation even further, we can write each state as
its corresponding integer from {0, 1, ...2N − 1}:

|α〉 α ∈ {0...d− 1} (7)

For example, the state |5〉 has as its binary representation |000...101〉. It is the state where all
of the particles are spin down except for the ones at site N − 1 and N − 3 which are spin up.

To represent linear combinations of states would be rather difficult, because we would have to
keep track of each state vector separately along with the coefficient. To compute Hij it would help
greatly to break H up into operators that map from exactly one basis vector to another, with a
constant multiplier. We can do this by utilizing the raising and lowering operators4.

Si± ≡ Six ± iSiy (8)

The annihilation and creation operators act on a spin state with intrinsic spin s and z-spin m
according to the following formula

S± |s m〉 = ~
√
s(s+ 1)−m(m± 1) |s m± 1〉 (9)

where the i in the exponent tells you which site the operator acts on. For example, S0
+ is

the raising operator for the spin-half particle at location site 0. By expanding out the terms in
1
2 (Si+S

i+1
− + Si−S

i+1
+), we can see how to rewrite SixS

i+1
x + SiyS

i+1
y in the Hamiltonian in terms of

the raising and lowering operators, which map one basis state to exactly one other basis state.

1

2
((Six + iSiy)(Si+1

x − iSi+1
y) + (Six − iSiy)(Si+1

x + iSi+1
y)) (10)

=
1

2
(SixS

i+1
x − iSixSi+1

y + iSiyS
i+1
x + SiyS

i+1
y + SixS

i+1
x + iSixS

i+1
y − iSiySi+1

x + SiyS
i+1
y) (11)

=
1

2
(2SixS

i+1
x + 2SiyS

i+1
y) (12)

= SixS
i+1
x + SiyS

i+1
y (13)

Thus, the Heisenberg Hamiltonian of system becomes

H =

N−2∑
i=0

1

2
(Si+S

i+1
− + Si−S

i+1
+) + SizS

i+1
z (14)

Each of the terms in the sum have a neat mapping between basis vectors of the system. For

example, suppose that N = 4, i = 2, α = 5. Then SizS
i+1
z |5〉 = −~

2
~
2 |0101〉 = −~2

4 |5〉 and

Si+S
i+1
− |5〉 = Si+S

i+1
− |0101〉 = 3~2

4 |0110〉 = 3~2

4 |6〉 and Si−S
i+1
+ |5〉 = 0. Armed with this new,

convenient form of the Hamiltonian, we can write code that calculates the matrix elements of H.
First, we can write an algorithm that gives you the binary representation of a state given α. This
form is particularly useful for determining the effect of the operators on a given state, since each
operator acts on two bits of the whole state at once. We give a simple, intuitive (though not efficient)
algorithm for finding the N bit binary representation of an integer in line 20 of Section 5.1. One can

4Also known as the creation and annihilation operators.

4

also go the other way: find the integer representation |α〉 given the binary representation (see line
13). The array element state[i] has the value 1.0 if the spin at position i is up and 0.0 otherwise.

One can compute SizS
j
z |α〉 by looking at the binary representation, and multiplying the provided

state vector by 1
4 if the z-spin at i and j are the same and − 1

4 if they are different5. See line 29 of
section 5.1. We represent this numerically by two double type integers: one the coefficient (result[0])
and one for α (result[1]).

Computing Si+S
j
− |α〉 (line 39 of Section 5.1) is also easier using the binary representation. If

the state at i is |1〉 or if the state at j is |0〉, then the resulting state will be annihilated. This is
represented by setting the coefficient equal to zero. We can find the resulting α from acting on the
state by just taking the original α and subtracting the bit at the j and adding the bit at i.

With these functions defined, it is a simple matter to compute the elements of the Heisenberg
Hamiltonian (see the Appendix for a complete implementation) and we can move on to computing

the spectrum using NumPy. Since Stotalz ≡
∑N−1
i=0 Siz commutes with the Heisenberg Hamiltonian,

we can plot the spectrum of each fixed Stotalz eigenvalue. To do that, we need to generate the basis
that has a given fixed total z-spin. From a computation perspective, that is not too difficult. One
method is to go through the complete basis, and keep track of the basis states whose total z-spin
adds up to the fixed value. We present an alternative approach in the appendix.

The alternative approach is to find the number of spins which are ”up” if the Stotalz eigenvalue
is, say, stz, and then recursively generate the sub-basis by moving around the ones in the state array.
Let x be the number of sites that have Sz = ~/2. Then, N − x must be the number of remaining
sites which have z spin −~/2. Thus, in units of ~/2

stz = x− (N − x) = 2x−N (15)

x =
1

2
(stz +N) (16)

How do we know we will always get an integer for x? It turns out that stz has a number of
interesting properties, such as that if N is even, then stz will always be even. Furthermore, if N is
odd, then stz will be odd. Thus their sum will always be even, and therefore x will be an integer.
We can prove this by recognizing that the parity of stz is an invariant: Suppose we have N spins
originally all spin up. In this configuration, stz has the same parity as N since they are equal. We
can generate all configurations (or states) possible for N spins by flipping bits. If we flip a bit, we
always change stz by 2–if the spin is down and we flip it up, then we increase stz by 2, and if the spin
is up and we flip it down, we decrease stz by two. Thus, the parity of stz is an invariant for a given
N .

Another interesting thing that the previous set of equations tells us is that there are exactly
N + 1 unique stz, one for each unique x ∈ {0...N}, ranging from −N to +N . Additionally, one can
ask, what is the size of the sub-basis with Stotalz = stz? Let this subspace be Sstz . Since there are
exactly x spin ups in a given configuration and there are N sites that we can choose from to be spin
up

dimSstz =

(
N

x

)
=

(
N

1
2 (stz +N)

)
(17)

We can sum over dimSstz to show that it partitions the space. Since there is a bijection between
x and stz we can just as well sum over x and then invoke the binomial theorem:

∑
dimSstz =

N∑
x=0

(
N

x

)
= (1 + 1)N = 2N � (18)

5Note that we are working in units of ~2

5

We plot the energy spectrum vs total z-spin stz in the following figures.

Figure 2: Energy is in units of ~2 and spin angular momentum is in units of ~.

There are a number of interesting features in these plots. One interesting property that we notice
is that the energy spectra are not evenly spaced vertically. In fact, at lower energies, the energy levels
are farther apart, whereas for higher energies, they get closer together. This effect is also emblematic
of the energy levels of ideal fermionic gasses. As the energy increases, the gaps between energy levels
become smaller and smaller. Another interesting thing worth noting is that each horizontal line of

energies represents a S2 ≡ (
∑ ~Si)2 degenerate subspace, where the S2 eigenvalue is given by l(l+ 1)

where l is the maximum value of stz for a given energy. Thus, one could present the same data by
just plotting the energy and the total stz value associated with it without losing any information.

To run the simulation for N = 12 required 40 minutes on a MacBook Pro (2012). We are quickly
reaching an upper limit on the size of the system N that we compute the spectrum of. A quick
inspection of the code reveals that even for a sparse matrix with only 1 non-zero value for every
column, we would still have to compute the result of an operator on a state 3(N − 1) times, which
results in at least 3(N−1)2N calculations of SizS

j
z |α〉 or Si+S

j
− |α〉 just to construct the Hamiltonian.

This is unfeasible for any large input size. This is where MPS comes in. But first, we must learn
another Hamiltonian: The AKLT-Hamiltonian.

6

3 Features of the AKLT Hamiltonian

The AKLT-Hamiltonian6 acts on a spin chain of length N with sites labeled 0 to N − 1. Typically,
the spin chain consists of spin 1. One interesting feature of a chain of spin ones is that each site can
be represented as the triplet states of a pair of spin halves. The AKLT-Hamiltonian is given by

H =

N−2∑
i=0

~Si · ~Si+1 +
1

3
(~Si · ~Si+1)2 (19)

The size of the Hilbert space in the spin-one chain is

dimH = 3N (20)

The spectrum of a single pair of spin-ones is not difficult to calculate, but as N gets big, the
computation becomes impossible to do by hand. As an exercise, we can write down what the

correct eigenvalues would be for a pair of spin ones labeled 1 and 2. In this case, ~S1 · ~S2 =
1
2 ((S)2 − (~S1)2 − (~S2)2) where S2 ≡ (~S1 + ~S2)2. Since every spin is a spin-one, the last two terms
have eigenvalues of 2~2. From the rules of the addition of angular momenta for two spins with
intrinsic spin s1 and s2, the total spin S ranges from s1 + s2 to |s1 − s2|. Thus, the eigenvalues of
(S)2 are 0, 2~2 and 6~2. Plugging in each possible eigenvalue of every operator gives the complete
spectrum for N = 2: {− 2

3 ,−
2
3 ,

4
3}~

2. The ground state energy shows up twice, and is half the energy
of the excited state. By adjusting the energy eigenvalues for the Hamiltonian for N = 2 we see that
it is a projector onto the singlet and triplet states.

The implementation follows conceptually from the implementation for the Heisenberg spin half
chain, so it may not be as instructive to go through it here7. This time around, we generated the
basis first and assigned to each state an integer from 0 to 3N − 1. Since each spin can be in one
of three states, the natural representation of each spin is as a base 3 integer string. If there is a
0.0, 1.0, or 2.0 at position i, then the site has Siz = −~, 0, and ~, respectively. We label the state
|0 0 0...0〉 as the integer 0, and follow the rules of addition base 3 to generate the rest of the basis in
O(3NN) (generating the basis means generating dimH length-N arrays).

We plotted again the energy spectrum vs. total z spin below. One of the more striking features
we notice is that there is a gap in the ground state Hamiltonian. This gap guarantees a ground state
MPS representation, which we will implement in the next section [7, 4]. In fact, it is conjectured
that there exists gaps for spin chains with an integer spin but not for a half-integer spin, which is
why we did not observe a gap between the Heisenberg ground state and the first excited state [1].
Another interesting feature we notice is that there is a four-fold degeneracy in the ground state,
regardless of N . See figure 4 for a conceptual understanding of why this is.

6Affleck, Lieb, Kennedy and Tasaki
7See the appendix for details.

7

Figure 3: Energy is in units of ~2 and spin angular momentum is in units of ~.

Figure 4: The AKLT Spin-1 Chain represented for N = 5. Each dot is a spin-half, and each line is a
singlet bond. Each pair of spin-half particles connected by a line is a valence bond state. Note that we
have drawn the system with open boundary conditions, as opposed to periodic boundary conditions
where a bond would connect the first and last sites. The open boundary condition suggests a pair
of free spin-halfs. This is significant because when looking at the plots, the ground state energy
spectrum contains 4 points: two for stz = 0, one for stz = 1, and one for stz = −1. This four-fold
degeneracy is explained by the fact that the two outer spins can be in four states (three triplet and
one singlet), where two of the states have stz = 0, and one has stz = 1 and one has stz = −1.

8

Stz = 0
0.0 0.0 -0.913 0.0 0.408 0.0 0.555 0.0 0.0
0.0 0.0 0.365 0.0 0.816 0.0 -0.577 0.0 0.0
0.0 0.0 0.183 0.0 0.408 0.0 0.599 0.0 0.0

Stz = 1
0.0 0.0 0.0 0.0 0.0 0.707 0.0 -0.707 0.0
0.0 0.0 0.0 0.0 0.0 0.707 0.0 0.707 0.0

Stz = 2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Figure 5: The Stz eigenstates are also generated for N = 2. The states are written in the ordered
basis where the number in the first column represents the coefficient to the state |1 − 1〉 ⊗ |1 − 1〉
and the final column represents the coefficient to the state |1 1〉 ⊗ |1 1〉.

4 Matrix Product State Representation of the AKLT Ground
State

4.1 What does a MPS look like?

Instead of beginning with the usual theoretical derivation of the MPS using singular value decom-
position, we can begin with the concrete example of the ground state for the AKLT Hamiltonian.
In the previous section, we were able to find the ground state vectors for the AKLT-Hamiltonian
by first constructing the Hamiltonian and then finding its eigenvectors using NumPy. This process
took time exponential in the number of sites, and thus quickly became infeasible, requiring a running
time of 40 minutes to compute the energy spectrum for N = 8.

As discussed prior, the MPS representation of the ground state takes time linear in the number
of sites and the size of the local state space. The efficiency of the MPS also depends on the auxiliary
space dimension χ. The auxiliary space dimension, also known as the bond dimension, is the largest
matrix dimension of the product state. The larger we make χ, the more accurate our representation.
In the case of the AKLT ground state, there exists an exact representation with χ = 2. This means
that using a small number of 2× 2 matrices, we can efficiently calculate the AKLT ground state for
arbitrary N .

Suppose that the state we want to represent as a product state is given by

|Ψ〉 =
∑
{mi}

c{mi} |m0m1...mN−1〉 (21)

where as usual, N is the number of sites and each site can take on d different states. As in the
Heisenberg example, mi is the z angular momentum at each site. For the AKLT, mi = 0,±1 so
d = 3. These indices, with mi ∈ {−1, 0, 1}, are referred to as the physical indices because they refer
to the possible results of an Sz measurement on a site. Without loss of generality8, suppose we write
|Ψ〉 as

|Ψ〉
∑
{mi}

(A[m0]...A[mN−1])αL,αR
|m0...mN−1〉 (22)

A number of changes have happened here. Apparently, we have replaced the coefficient in our
first representation of |Ψ〉 with an element of a product of N matrices: A[m0]...A[mN−1]. In general,
each site has d matrices associated with it, one for each physical index. Depending on the physical

8We haven’t stated any explicit condition on the size of the matrices, so at this stage there isn’t any loss of
generality in writing the state as a matrix product state.

9

situation, the matrices could vary from site to site though in systems with translation symmetry cases
they won’t. Additionally, we have defined indices αL, αR that give the location of the coefficient in
the matrix. At first, this seems like a roundabout way of representing a particular state. To calculate
the coefficient for a single basis state, we would have to do N − 1 matrix multiplications. The sum
runs over all of the 3N states available to the system, so on the surface it seems as though even if a
Matrix Product State representation of a particular state exists, it would still take use exponential
time to calculate it.

Let’s explore a few examples of MPS. Suppose that we want to represent the highest Stz state
using MPS. Intuitively, we know this state will be (in the physical indices) |+1...+ 1〉. How can we
represent this state using Matrix Product States? If we let A[−1] = A[0] =

(
0
)

and let A[+1] =
(
1
)

and use the same set of matrices at each site, then

|Ψ〉 =
∑
{mi}

(A[m0]...A[mN−1])αL,αR
|m0...mN−1〉 = |+1...+ 1〉 (23)

since the only term in the sum that will survive is the one where m0 = ... = mN−1 = +1. The
bond dimension of this system is 1, since all the matrices in this case are 1 dimensional.

Suppose we want to find the MPS representation for the CAT state of a system. The CAT state
is an equal superposition of the highest and lowest Stz states.

|ΨCAT 〉 =
1√
2

(|+1 ... + 1〉+ |−1 ... − 1〉) (24)

Consider now the matrices

A[−1] =

(
0 0
0 1

)
A[0] =

(
0 0
0 0

)
A[+1] =

(
1 0
0 0

)
(25)

Note that the product of any two of the matrices that are not the same is zero (as expected).
Similarly, any state that has 0 as a physical index will make the matrix product zero. Thus, the
matrix product will not be zero only if the state in the sum is |+1 ... + 1〉 or |−1 ... − 1〉.

|ΨCAT 〉 = (A[+1])NαL,αR
|+1 ... + 1〉+ (A[−1])NαL,αR

|−1 ... − 1〉 (26)

= (A[+1])αL,αR
|+1 ... + 1〉+ (A[−1])αL,αR

|−1 ... − 1〉 (27)

However, the issue is that A[+1] and A[−1] are not non-zero in the same location. Thus, we can’t
get an equal superposition using only one pair of indices. To work around this, we can use the
trace of the product of the matrices. This approach is often used any time the system as periodic
boundary conditions. Since the trace of both matrices is 1, we get the CAT state up to a global
normalization factor.

|Ψ〉 =
∑
{mi}

Tr(A[m0]...A[mN−1]) |m0...mN−1〉 = |+1 ... + 1〉+ |−1 ... − 1〉 (28)

=
√

2 |ΨCAT 〉 (29)

4.2 AKLT Ground State

We will examine the matrices

10

A[0] =

−√ 1
3 0

0
√

1
3

 A[+1] =

(
0
√

2
3

0 0

)
A[−1] =

(
0 0

−
√

2
3 0

)
(30)

These three matrices can be used to generate the ground state manifold for the AKLT Hamilto-
nian. To see this, we can work out the example for N = 2 by hand. There are four ground state
vectors for N = 2 with energy (as determined in a previous section) − 2

3 . In the total spin S2 and Stz
basis, the states are |1 0〉 , |1 ± 1〉 , |00〉 (where the first number is the S2 eigenvalue and the second
is the Stz eigenvalue). There are four spots in the matrix which can be specified by the αL, αR, and
therefore we should be able to recover 4 independent states. Let’s see which of the matrix elements
of the product correspond to the coefficients for a given state. For two sites, here are all the matrix
products that can be evaluated.

A[0]A[+1] =

−√ 1
3

0

0
√

1
3

(0 √
2
3

0 0

)
=

(
0 −

√
2/3

0 0

)
A[+1]A[0] =

(
0
√

2
3

0 0

)−√ 1
3

0

0
√

1
3

 =

(
0
√
2/3

0 0

)

A[0]A[0] =

−√ 1
3

0

0
√

1
3

−√ 1
3

0

0
√

1
3

 =

(
1/3 0
0 1/3

)
A[+1]A[+1] =

(
0
√

2
3

0 0

)(
0
√

2
3

0 0

)
=

(
0 0
0 0

)

A[+1]A[−1] =

(
0
√

2
3

0 0

)(
0 0

−
√

2
3

0

)
=

(
−2/3 0
0 0

)
A[−1]A[+1] =

(
0 0

−
√

2
3

0

)(
0
√

2
3

0 0

)
=

(
0 0
0 −2/3

)

A[−1]A[−1] =

(
0 0

−
√

2
3

0

)(
0 0

−
√

2
3

0

)
=

(
0 0
0 0

)
A[−1]A[0] =

(
0 0

−
√

2
3

0

)−√ 1
3

0

0
√

1
3

 =

(
0 0

−
√
2/3 0

)

A[0]A[−1] =

−√ 1
3

0

0
√

1
3

(0 0

−
√

2
3

0

)
=

(
0 0

−
√
2/3 0

)

From now on, we will write everything using the physical indices. We define |ΨAKLT
s2,stz

〉 as the

AKLT ground state with total spin s2 and total z angular momentum stz. The state |ΨAKLT
1 1 〉 in the

physical indices is given by 1√
2
(|1 0〉 − |0 1〉). Let’s examine what vector we recover when looking at

(αL, αR) = (1, 2) index of the products. We know that any product involving A[−1] will give 0 at
the position (1, 2) of the product. Thus, we only need to examine the products of A[+1] and A[0].
Referring to the block of equations above, we ascertain the state formed by αL = 1, αR = 2.∑

{mi}

(A[m0]...A[mN−1])1,2 |m0...mN−1〉 =
√

2/3 (|1 0〉 − |0 1〉) = 3/2 |ΨAKLT
1 1 〉 (31)

Note that the matrices give the exact Stz = 1 ground state of the AKLT Hamiltonian for N = 2
within a constant factor of 3/2. We can generate the remaining basis elements by picking different
matrix elements of the product:

(αL, αR) = (2, 1)→ |Ψ〉 = −
√

2/3 (|0 − 1〉+ |−1 0〉) = 3/2 |ΨAKLT
1−1 〉 (32)

(αL, αR) = (1, 1)→ |Ψ〉 =
1

3
(|0 0〉 − 2 |+1 − 1〉) (33)

(αL, αR) = (2, 2)→ |Ψ〉 =
1

3
(|0 0〉 − 2 |−1 + 1〉) (34)

11

The first equation gives the total spin S2 = 1, Stz = −1 eigenstate of the AKLT. The second
and third equation of the set span the Stz = 0 space and are linear combinations of |ΨAKLT

0 0 〉 and
|ΨAKLT

1 0 〉. We can extract |ΨAKLT
1 0 〉 by subtracting the second and third equation.

We can easily write some code that generates the ground state given N , αL, αR and a set of
MPS matrices. In under a minute, we can generate one of the ground state eigenvectors for N = 8
and measure its energy using a simple code that takes a vector and multiplies it by the Hamiltonian.
Since the N = 8 vector has 38 = 6561 components (if we don’t use any symmetry), we won’t display
it here. To confirm that our MPS approximation is accurate, we can compare the inner product of
the exact diagonalization state for N = 4 calculated using the code derived in the last section with
the MPS state. If the inner product is 1, we know the MPS gives the correct state.

αL = 1, αR = 1
0.0 0.0 0.0 0.0 0.33 0.0 -0.66 0.0 0.0

αL = 1, αR = 2
0.0 0.0 0.0 0.0 0.0 -0.47 0.0 0.47 0.0

αL = 2, αR = 1
0.0 0.47 0.0 -0.47 0.0 0.0 0.0 0.0 0.0

αL = 2, αR = 2
0.0 0.0 -0.66 0.0 0.33 0.0 0.0 0.0 0.0

Figure 6: MPS Representation for N = 2 in basis ordered from |−1 − 1〉 to |+1 + 1〉. Note that
every ground state for arbitrary N consists of 4 degenerate energy eigenstates.

As mentioned earlier, it is not clear how having an MPS representation results in more efficient
calculations of pertinent system variables e.g. scalar products between states and the ground state
energy. In this section, we will explore some mathematical ideas behind MPS such as Singular
Value Decomposition and Schmidt Decomposition. We will also talk about the Von Neumann
Entanglement entropy and why it is relevant to MPS. We will conclude the paper with an example
of a polynomial time computation of the overlap between two vectors using Matrix Product States.

4.3 SVD and Schmidt Decomposition of Bipartite Systems

The Singular Value Decomposition Theorem (often contracted to SVD) says that any rectangular
matrix M can be written as

M = USV † (35)

where U and V are semi-orthonormal and S is diagonal with non-negative entries. Let’s break
that down. Suppose M has n rows and m columns. Then U is a n × min(n,m) matrix with
orthonormal columns i.e. U†U = I. S is a min(n,m)×min(n,m) diagonal matrix with nonnegative
entries written s.t. S1,1 ≥ S2,2 ≥ ...Sr,r > 0 and St,t = 0 ∀t > r. The rank of the diagonal matrix S
is also r. In order for the dimensions to work out, V † is then min(n,m)×m. It also has orthogonal
rows, so V †V = I [8].

A bipartite system is a system that consists of two parts, where the combined Hilbert space of
each part forms the full Hilbert space. If the two parts are HL and HR, then the full Hilbert space
is H = HL⊗HR. Using SVD, we can write any bipartite system in a much more illuminating form.
This form is known as the Schmidt decomposition.

Suppose that dimHL = n and dimHR = m. We can write any state of the combined system H
as

|Ψ〉 =

n∑
i=1

m∑
j=1

Mij |i〉L |j〉R (36)

12

where {|i〉L} and {|i〉R} are orthogonal bases for HL and HR, respectively. We can think of
each coefficient of the basis state Mij as a matrix element of some matrix M . With some algebraic
manipulation, we can deduce that the reduced density matrices of the sub-systems ρL and ρR are
given by MM† and M†M , respectively. Recall that the reduced density matrix for a system or
subsystem is a sum of projectors onto the states of the system weighted by their probability of
being measured. The reduced density matrix for the full state is then ρ = |Ψ〉 〈Ψ|, and the reduced
density matrix for one part is found by tracing ρ over the states of the other part [5]. We derive the
relationship for ρL below (ρR follows similarly).

ρL = TrR(|Ψ〉 〈Ψ|) (37)

=

m∑
j=1

〈j|R

∑
i′j′

Mi′j′ |i′〉L |j
′〉R

∑
i′′j′′

M∗i′′j′′ 〈i′′|L 〈j
′′|R

 |j〉R (38)

=

m∑
j=1

∑
i′j′

Mi′j′ |i′〉L 〈j|R |j
′〉R

∑
i′′j′′

M∗i′′j′′ 〈i′′|L 〈j
′′|R |j〉R

 (39)

=

m∑
j=1

(∑
i′

Mi′j |i′〉L
∑
i′′

M∗i′′j 〈i′′|L

)
(40)

In the second line of the equations, we exploited the orthogonality of {|j〉R}. To complete the
derivation, let’s observe what an element of ρL, (ρL)ij , would be.

(ρL)ij = 〈i|L
m∑
k=1

(∑
i′

Mi′k |i′〉L
∑
i′′

M∗i′′k 〈i′′|L

)
|j〉L (41)

=

m∑
k=1

MikM
∗
jk =

m∑
k=1

Mik(M†)kj = (MM†)ij (42)

ρL = MM† � (43)

Suppose that we apply SVD to the matrix M . M is a rectangular n ×m matrix, and so SVD
applies, however it is unclear at this stage what decomposing the matrix of coefficients would yield.
Following through with the calculation, we arrive at an interesting result.

M = USV † (44)

Mij =

min(n,m)∑
k=1

Uik(SV †)kj (45)

=

min(n,m)∑
k=1

UikSkkV
†
kj (46)

Since S is a nonnegative diagonal matrix, we can keep the terms in the sum where the diagonal
elements are non-zero and discard the ones which are zero. The last nonzero diagonal element is, by
definition of r, Srr ≡ sr 6= 0.

13

Mij =

r∑
k=1

UikskV
†
kj (47)

|Ψ〉 =

n∑
i=1

m∑
j=1

r∑
k=1

UikskV
†
kj |i〉L |j〉R (48)

=

r∑
k=1

sk

(
n∑
i=1

Uik |i〉L

) m∑
j=1

V †kj |j〉R

 (49)

=

r∑
k=1

sk |αk〉L |αk〉R (50)

where

|αk〉L ≡
n∑
i=1

Uik |i〉L |αk〉R ≡
m∑
j=1

V †kj |j〉R (51)

To complete the derivations, we will show that the bases {|αk〉L} and {|αk〉R} are orthonormal.
If n = m, then both sets are orthonormal bases for their respective systems [8].

〈αk′ |αk〉L =

n∑
i′=1

U∗i′k′ 〈i′|L
n∑
i=1

Uik |i〉L (52)

=

n∑
i=1

U∗ik′Uik = δk′,k (53)

where in the first line, we utilize the orthogonality of {|i〉L} and in the last line, we utilize the
orthogonality of the columns of U . The proof for the orthonormality of {|αk〉R} is identical. Note
also that since the above represents a state, the magnitude squared of each coefficient must add up
to one.

r∑
k=1

|sk|2 = 1 (54)

What is the merit of writing the combined state in this fashion? Firstly, the Von Neumann
entropy, which we will see is a measure of the entanglement of the system, is easily calculable in this
form. The Von Neumann entropy of the HL subsystem is [5]

SL ≡ −TrL(ρL ln ρL) (55)

In the form of the Schmidt decomposition, we can see ρ is a sum of pure states of the form
|αk〉L |αk〉R 〈αk|L 〈αk|R each of which has a probability of s∗ksk ≡ |sk|2 of being measured. Thus,
the Von Neumann entropy simplifies. Additionally, the mixed density matrices ρL and ρR are also
easily calculable [8].

14

SL = SR = −
r∑

k=1

|sk|2 ln(|sk|2) (56)

ρL = TrR(|Ψ〉 〈Ψ|) (57)

=

r∑
k=1

〈αk|R

(
r∑

k′=1

sk′ |αk′〉L |αk′〉R
r∑

k′′=1

s∗k′′ 〈αk′′ |L 〈αk′′ |R

)
|αk〉R (58)

=

r∑
k=1

sks
∗
k |αk〉L 〈αk|L =

r∑
k=1

|sk|2 |αk〉L 〈αk|L (59)

ρR =

r∑
k=1

|sk|2 |αk〉R 〈αk|R (60)

4.4 Entanglement Entropy of a Spin Chain

We consider a similar exercise on an arbitrary state |Ψ〉 of a familiar system: a spin chain of N
particles. Suppose that we decide to divide the system into a left and a right half: H = HL⊗HR. The
left half of the system consists of the first NL particles and is spanned by the basis {|m0 ...mNL−1〉}.
The right half consists of the remaining particles and is spanned by the basis {|mNL

...mN−1〉}. We
can write the coefficients of the state as matrix elements of the entanglement matrix M , which is
defined by the relationship M{m0...mNL−1},{mNL

...mN−1} = c{m1...mN−1}. We define n and m as the
dimensions of the left and right Hilbert spaces, respectively. It follows that dimH = nm and M is
n×m.

|Ψ〉 =
∑
{mi}

c{mi} |m0 ... mN−1〉 (61)

=
∑
{mi}

M{m0...mNL−1},{mNL
...mN−1} |m0 ... mNL−1〉 |mNL

...mN−1〉 (62)

As we can see, the system above is bipartite and therefore we can write it as a Schmidt decom-
position. We use slightly different notation to express that we are now specifically looking at the
example of a spin chain.

|Ψ〉 =

min(n,m)∑
i=1

e−Ei/2 |L : i〉 ⊗ |R : i〉 (63)

where some of the e−Ei/2 are allowed to be zero9, in accordance with the fact that some of the
si in the Schmidt decomposition in equation (50) can be 0. The states {|L : i〉} and {|R : i〉} are
orthonormal bases given the SVD of M = UDV †.

|L : i〉 =
∑

{m0...mNL−1}

U{m0...mNL−1},i |m0...mNL−1〉 (64)

|R : i〉 =
∑

{mNL
...mN−1}

V ∗{mNL
...mN−1},i |mNL

...mN−1〉 (65)

9Or equivalently some of the Ei →∞

15

Using the fact that ρL = MM†, we see that the reduced density matrix of the left half L is given
by

ρL =

min(n,m)∑
i=1

e−Ei |L : i〉 〈L : i| (66)

The spectrum of ρL is the set of {e−Ei}. This is clear the diagonalization of ρL above. The rank
will be the number of non-zero coefficients e−Ei . The reduced density matrix for the right half ρR
has the same spectrum and rank.

As we saw before, the Von Neumann Entropy, or the entanglement entropy, of the left half is given
by SL = −TrL[ρL ln ρL]. How do we compute the logarithm of a matrix? First, note that the square
of ρL amounts to squaring the coefficient of each term in the sum of equation (67). Generalizing

this, we notice that any power a of ρL is given by (ρL)a =
∑min(n,m)
i=1 e−aEi |L : i〉 〈L : i|. The natural

logarithm function has a polynomial expansion and writing ln ρL in terms of this expansion reveals
that the logarithm is just applied to the coefficients e−Ei . Thus, the entanglement entropy is given
by

SL =
∑
i=1

〈L : i|

(∑
i′

e−Ei′ |L : i′〉 〈L : i′|
∑
i′′

−Ei′′ |L : i′′〉 〈L : i′′|

)
|L : i〉 (67)

= −
min(n,m)∑
i=1

Eie−Ei (68)

If |Ψ〉 is a product state, there is only one non-zero e−Ei , which must equal 1 due to normalization.

Thus, SL = −
∑min(n,m)
i=1 Eie−Ei = 0 for a product state. It will be greater than 0 for any entangled

state.

4.4.1 An example with Two Spin Halfs

|Ψ〉 = c11 |11〉+ c10 |10〉+ c01 |01〉+ c00 |00〉 (69)

A generic state for two spin halfs is given by the equation above using the same notation as in
section 2. The entanglement matrix M from the previous section has 4 entries is given by

M =

(
c11 c10

c01 c00

)
(70)

The density matrix for the left spin is ρL which is given by tracing the density matrix |Ψ〉 〈Ψ|
over the right states, or by using the fact we proved in the previous section that ρL = MM†

ρL = MM† =

(
c11 c10

c01 c00

)(
c∗11 c∗01

c∗10 c∗00

)
(71)

Suppose |Ψ〉 is any of the product states, such as |11〉. Then

ρL =

(
1 0
0 0

)(
1 0
0 0

)
=

(
1 0
0 0

)
(72)

SL = −TrL[ρL ln ρL] = −Tr[
(

1 0
0 0

)(
0 0
0 0

)
] = 0 (73)

16

If |Ψ〉 is the singlet state, which definitely exhibits entanglement, then

ρL =

(
0 1/

√
2

−1/
√

2 0

)(
0 −1/

√
2

1/
√

2 0

)
=

(
1/2 0
0 1/2

)
(74)

SL = −TrL[ρL ln ρL] = −Tr[
(

1/2 0
0 1/2

)(
ln 1

2 0
0 ln 1

2

)
] = ln 2 (75)

In this case, ρL for the Stz = 0 triplet state is the same and therefore so is the entanglement
entropy. As implied by the name, it seems that the more entangled a system is, the higher the
entanglement entropy. In fact, we can show that the maximally entangled states for two spin halfs
with Stz = 0 are in fact the singlet and triplet states. Indeed, |Ψ〉 = β |10〉+α |01〉 where β2 +α2 = 1.
The entanglement entropy would be given by SL = −β2 lnβ2−α2 lnα2. We can find the maximum
by taking both derivatives, setting them equal to zero, and using the method of Lagrange multipliers
to fix the normalization condition. Or we could also just infer from symmetry that the critical point
could only occur at α = β = 1/

√
2, which shows that an equal superposition of |01〉 and |10〉 states

gives the maximal entropy. Additionally, it tells us that the maximum entanglement entropy of a
pair of spin halfs is ln 2.

4.5 MPS and the Reduced Density Matrix

∑
{mi}

(
A[m0]...A[mN−1]

)
αL,αR

|m0...mN−1〉 (76)

We will now see how to get ρL from the MPS representation of a state. Suppose we have a state
|Ψ〉 with an MPS representation given above. Let χ be the bond dimension of the MPS. Suppose
that we divide the system up into a left side (which includes the first NL particles of the system)
and a right side. Then we can rewrite the MPS in a form that resembles the Schmidt decomposition.
As we learned in the previous sections, this form is very illuminating for the entanglement related
properties of the system.

|Ψ〉 =
∑
{mi}

χ∑
α=1

(A[m0]...A[mNL−1])αL,α(A[mNL
]...A[mN−1])α,αR

|m0...mNL−1〉 ⊗ |mNL
...mN−1〉 (77)

=

χ∑
α=1

∑
{mi}

((A[m0]...A[mNL−1])αL,α |m0...mNL−1〉)⊗ ((A[mNL
]...A[mN−1])α,αR

|mNL
...mN−1〉)

(78)

=

χ∑
α=1

|L : α〉 ⊗ |R : α〉 (79)

|L : α〉 ≡
∑

{m0...mNL−1}

(A[m0]...A[mNL−1])αL,α |m0...mNL−1〉 (80)

|R : α〉 ≡
∑

{mNL
...mN−1}

(A[mNL
]...A[mN−1])α,αR

|mNL
...mN−1〉 (81)

However, the equations above aren’t quite a Schmidt decomposition. A Schmidt decomposition
guarantees an orthonormal basis for each section of the Hilbert space. In this case, there’s no

17

reason for {|L : α〉} or {|R : α〉} to be an orthonormal basis. However, we can always extract an
orthonormal basis from a subspace in a number of ways, for example, by Gram-Schmidt. Suppose
that we find χ-dimensional orthonormalized bases for each subspace, {|L : ᾱ〉} and {|R : β̄〉}, and
we rewrite |L : α〉 and |R : α〉 in these bases using transformation matrices10 U and V .

|L : α〉 =
∑
ᾱ

Uα,ᾱ |L : ᾱ〉 |R : α〉 =
∑
β̄

Vα,β̄ |R : β̄〉 (82)

|Ψ〉 =

χ∑
α=1

|L : α〉 |R : α〉 (83)

=

χ∑
α=1

∑
ᾱ

Uα,ᾱ |L : ᾱ〉
∑
β̄

Vα,β̄ |R : β̄〉 (84)

=
∑
ᾱ

∑
β̄

(

χ∑
α=1

Uα,ᾱVα,β̄) |L : ᾱ〉 |R : β̄〉 (85)

=
∑
ᾱ

∑
β̄

(

χ∑
α=1

UTᾱ,αVα,β̄) |L : ᾱ〉 |R : β̄〉 (86)

=
∑
ᾱ,β̄

(UTV)ᾱ,β̄ |L : ᾱ〉 |R : β̄〉 (87)

We almost have a Schmidt decomposition of the system. Note that since ρL is given by MM†,
ρL will be a χ× χ matrix. By the rank-nullity theorem, χ is the sum of the rank and nullity of ρL,
therefore the rank of ρL is upper bounded by χ.

This is a fascinating result, mainly because it tells us about the maximum of the entanglement
entropy of a system. In the case of the AKLT-Hamiltonian, we saw that the ground states for all N
could be generated exactly using the MPS representation, for which χ = 2. Thus, the rank of ρL,
which as we saw before was correlated with the entanglement of the system, can be at most 2. From
this, we can infer that the maximum entropy of the AKLT ground state, for any N , is given by ln 2.

max(SL) = ln 2 (88)

However, to actually compute the spectrum of ρL we need to know the transformation matrices
U, V . We will find U by diagonalizing the overlap matrix O, defined by Oα,α′ = 〈L : α|L : α′〉. A
similar method can be used to determine V . Given an efficient method to calculate O, we have an
efficient method to calculate U and V . From the definition of |L : α〉,

Oα,α′ = 〈L : α|L : α′〉 (89)

=
∑

{m0...mNL−1}

(A[m0]...A[mNL−1])∗αL,α(A[m0]...A[mNL−1])αL,α′ (90)

We also know from the expansion of |L : α〉 in the |L : ᾱ〉 basis that

10Note that U and V are χ× χ matrices.

18

Oα,α′ =

χ∑
ᾱ=1

U∗α,ᾱUα′,ᾱ (91)

=

χ∑
ᾱ=1

(U†)ᾱ,αUα′,ᾱ (92)

O = UU† (93)

If O we write all of matrices using real numbers, then O becomes a symmetric real matrix. In
addition, O is going to be positive semi-definite, which tells us that all of the eigenvalues of O are
non-negative. From Spectral Decomposition, we know that O has a diagonalization QTDQ, where
Q is orthogonal and D is the matrix of eigenvalues. Since all the entries of D are non-negative, we
can rewrite D as A2, where A is the diagonal matrix with the square root of the eigenvalues.

O = QTDQ = QTA2Q = QTAAQ = QTA(QTA)T (94)

(95)

Thus, we arrive at a form for O which is very similar to UUT . Using the diagonalization of O,
we can find U . If we diagonalize the overlap matrices for the |R : α〉 vectors, we would be able to
find V . We can then compute ρL simply.

ρL = UTV UV T (96)

4.6 Using MPS to Efficiently Compute the Overlap Matrix

Figure 7: A graphical description of the transfer operator in MPS, diagram from [7]

Suppose that we want to compute the squared norm of a vector |Ψ〉: 〈Ψ|Ψ〉. In general, each
scalar norm requires dimH multiplications, thus the operation scales exponentially with system size
N . In this section, we will give a concrete example of how MPS can be used to work around the
exponential nature of many-body Hilbert spaces.

Consider a spin chain on N = 2 particles. Suppose that the set of matrices at each site is the
same. This is the case for the AKLT-Hamiltonian. An arbitrary state of the system has an MPS
representation. We can find the squared norm in the MPS representation as follows.

19

|Ψ〉 =
∑

{m0 m1}

(A[m0]A[m1])αL,αR
|m0 m1〉 (97)

〈Ψ|Ψ〉 =
∑

{m0 m1}

∑
{m′0 m′1}

(A[m′0]A[m′1])∗αL,αR
(A[m0]A[m1])αL,αR

〈m′0 m′1|m0 m1〉 (98)

=
∑

{m0 m1}

(A[m0]A[m1])∗αL,αR
(A[m0]A[m1])αL,αR

(99)

=
∑
m0

∑
m1

∑
i

A
[m0]∗

αL,i
A

[m1]∗

i,αR

∑
i′

A
[m0]
αL,i′

A
[m1]
i′,αR

(100)

=
∑
i,i′

(∑
m0

A
[m0]∗

αL,i
A

[m0]
αL,i′

)(∑
m1

A
[m1]∗

i,αR
A

[m0]
i′,αR

)
(101)

To simplify the expression, we can introduce a tensor called the Transfer Operator, E. The
Transfer Operator E is a tensor because it takes four indices to retrieve an element, unlike a matrix
which takes two indices to retrieve an element. In the case of the AKLT ground state, each matrix
A[m] is χ× χ and χ = 2. Thus, we can write the transfer operator as a χ2 × χ2 matrix [7].

E ≡
∑
m

A[m]∗ ⊗A[m] (102)

E(α,α′);(β,β′) =
∑
m

A
[m]∗

α,β A
[m]
α′,β′ (103)

Consider the operator EN . If we take the expression for the tensor operator above and raise it
to the Nth power, we get

EN =
∑
m0

...
∑
mN−1

A[m0]∗ ...A[mN−1]∗ ⊗A[m0]...A[mN−1] (104)

=
∑

{m0...mN−1}

A[m0]∗ ...A[mN−1]∗ ⊗A[m0]...A[mN−1] (105)

=
∑

{m0...mN−1}

(A[m0]...A[mN−1])∗ ⊗A[m0]...A[mN−1] (106)

Using the second defining equation of an element of the transfer matrix, we can infer what an
element of EN would be

EN(α,α′);(β,β′) =
∑

{m0...mN−1}

(A[m0]...A[mN−1])∗α,β(A[m0]...A[mN−1])α′,β′ (107)

If we evaluate the above tensor at (αL, αL); (αR, αR), we get exactly the norm of an N particle
state. Thus, for the case of N = 2, 〈Ψ|Ψ〉 is just E2

(αL,αL);(αR,αR). This simplifies our notation

greatly, while also telling us some useful things. For example, to compute EN , we just need to do
N − 1 multiplications of a χ2 × χ2 matrix, as opposed to a dN multiplications. In fact, we could
do it in lnN matrix multiplications by repeated squaring. Thus, if we calculate E, we might hope
to calculate 〈Ψ|Ψ〉 efficiently. The calculation for E should go like dχ4, which implies that we can
compute 〈Ψ|Ψ〉 in O(dχ4 lnN). We write a simple code (see the appendix) to generate the matrix
elements for E for the AKLT model.

20

E =
1

3


1 0 0 2
0 −1 0 0
0 0 −1 0
2 0 0 1

 (108)

Figure 8: The transfer operator E, generated by the code. The code is provided in the appendix.

Note that while E is not in general symmetric, it is for the AKLT case because for each (αL, αR),∑
m(A

[m]
αL,αR)2 =

∑
m(A

[m]
αR,αL)2. For the AKLT model, the ground state matrices seem to have this

property, and so E and all its powers are symmetric11. The Nth power of E is the matrix of overlaps
between the ground state vectors for the N particle AKLT-model.

The eigenvalues of E, which can be determined exactly, are [1,−1/3,−1/3,−1/3]. Writing E as
a sum of projectors weighted by their eigenvalue λi,

∑
i λi |λi〉 〈λi|, we notice that as N gets big, the

projectors with eigenvalues less than one die out and EN → |λ1〉 〈λ1|, where |λ1〉 is the eigenvector
with eigenvalue 1. Thus, for large N ,

EN → 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (109)

Thus as N goes to infinity, the squared norms of the MPS representations of the AKLT ground
state go to 1/2. Thus, finding the norm of one of the AKLT ground state vectors for large N , an
operation that would one would think scales exponentially, can be approximated to 1/2 in constant
time and with a high degree of accuracy. For some other system, the operation would amount to
taking the Nth power of the largest eigenvalue of the transfer matrix E, an operation that can be
done in lnN time12.

N 〈Ψ|Ψ〉
10 0.499991532395
20 0.499999999735
40 0.499999999756
80 0.499999999513

Figure 9: A table of the squared norms as N gets big. Note that the choice of ground state vector
makes no difference for large N .

In computing E, we have also found a way to efficiently compute the inner products of states
that have MPS representations. Referring to elements of the overlap matrix O in equation (90),
Oα,α′ = ENL

(αL,αL);(α,α′) where E is the transfer matrix for that system. In the previous section, we

showed that one could determine U and V , and thus ρL, given an efficient way to compute the inner
products of {|L : α〉} and {|R : α〉}. Now that we have found that, we see how MPS allows one to
compute in polynomial time various quantities, in this case the entanglement entropy, of systems
whose Hilbert spaces grow exponentially with input size N . This is a remarkable and boundlessly
useful fact. Thanks to MPS, simulating large many-body quantum systems is no longer impossible.

11The powers of a symmetric matrix are symmetric. The proof is straightforward.
12Not accounting for the time needed to diagonalize E, which is polynomial in χ.

21

5 Appendix

5.1 Heisenberg Hamiltonian Exact Diagonalization Code

1 import numpy as np

2 import numpy.linalg as la

3 import scipy.misc as sc

4 import matplotlib.mlab as mlab

5 import matplotlib.pyplot as plt

6 import sys

7 import numpy as np

8 import numpy.linalg as la

9 import scipy.misc as sc

10 import matplotlib.mlab as mlab

11 import matplotlib.pyplot as plt

12
13 def getIntegerRepresentation(state) :

14 alpha = 0

15 N = len(state)

16 for i in range(0, N) :

17 alpha = alpha + state[i] * (2 ** (N - i - 1))

18 return alpha

19
20 def getState(alpha , N) :

21 state = np.zeros((N, 1))

22 for i in range(0, N) :

23 pw = 2 ** (N - i - 1)

24 if pw <= alpha :

25 state[i] = 1.0

26 alpha = alpha - pw

27 return state

28
29 def SziSzj(alpha , N, i, j) :

30 result = np.zeros ((2, 1))

31 result [1] = alpha

32 state = getState(alpha , N)

33 if state[i] == state[j] :

34 result [0] = 1.0 / 4.0

35 else :

36 result [0] = -1.0 / 4.0

37 return result

38
39 def SpiSmj(alpha , N, i, j) :

40 result = np.zeros ((2, 1))

41 state = getState(alpha , N)

42 if state[i] == 1.0 or state[j] == 0.0 :

43 return result

44 result [0] = 1.0

45 result [1] = alpha + 2**(N - i - 1) - 2**(N - j - 1)

46 return result

47
48 def innerProd(alpha , beta) :

49 if alpha == beta :

50 return 1.0

51 else :

22

52 return 0.0

53
54 #build the basis for N spin -halfs that has total Sz spin szt

55 spinhalfbasis = np.array ([])

56
57 def buildBasis(szt , N) :

58 global spinhalfbasis

59 spinhalfbasis = np.array ([])

60
61 k = (N + 2 * szt) / 2

62 #begin by placing 1’s at all the first positions

63 positions = np.arange(0, k)

64
65 #compute current value of bit vector

66 val = 0.0

67 for i in range(0, len(positions)) :

68 val += 2**(N - positions[i] - 1)

69
70 #add additional basis elements recursively

71 createBasisElements(val , positions , N)

72
73 def advance(alpha , N, i) :

74 return alpha - 2**(N - i - 1) + 2**(N - (i + 1) - 1)

75
76 def createBasisElements(val , positions , N) :

77 global spinhalfbasis

78 if val not in spinhalfbasis [:] :

79 spinhalfbasis = np.append(spinhalfbasis , val)

80 for i in reversed(range(0, len(positions))) :

81 #create a new basis state by moving a "1" to the right

82 if i == len(positions) - 1 : #at the rightmost position

83 if positions[i] < (N - 1) :

84 #calculate and append the new basis element

85 newval = advance(val , N, positions[i])

86 #recursive step

87 positions[i] += 1

88 createBasisElements(newval , positions , N)

89 positions[i] -= 1

90 else : #not at the rightmost position , no other 1 in front

91 if positions[i] != (positions[i+1] - 1) :

92 #calculate and append the new basis element

93 newval = advance(val , N, positions[i])

94 #recursive step

95 positions[i] += 1

96 createBasisElements(newval , positions , N)

97 positions[i] -= 1

98
99 #Construct the Heisenberg Hamiltonian for N spin -halfs

100 def buildHamiltonian(N) :

101 global spinhalfbasis

102 np.sort(spinhalfbasis)

103 dim = len(spinhalfbasis)

104 H = np.zeros((dim , dim))

105 for i in range(0, dim) :

106 for j in range(0, dim) :

23

107 val = 0.0

108 for k in range(0, N - 1) :

109 result1 = SziSzj(spinhalfbasis[j], N, k, k + 1)

110 result2 = SpiSmj(spinhalfbasis[j], N, k, k + 1)

111 result3 = SpiSmj(spinhalfbasis[j], N, k + 1, k)

112
113 val += result1 [0] * innerProd(spinhalfbasis[i], result1 [1]) \

114 + 0.5 * (result2 [0] * innerProd(spinhalfbasis[i], result2 [1]) \

115 + result3 [0] * innerProd(spinhalfbasis[i], result3 [1]))

116
117 H[i][j] = val

118
119 return H

120
121 #Generate the spectrum for H for each possible value of szt

122 N = 12

123 szt_data = np.array ([])

124 energy_data = []

125 s = np.array ([])

126
127 for i in range(0, N+1) :

128 energy_data.append ([])

129
130 for i in range(0, N+1) :

131 #letting i be the number of spin -up qubits , we compute szt

132 szt = 0.5 * i - 0.5 * (N - i)

133 #build the basis and put it into var "spinhalfbasis"

134 buildBasis(szt , N)

135 H = buildHamiltonian(N)

136 #determine the eigenvalues

137 w, v = la.eig(H)

138
139 szt_data = np.append(szt_data , szt)

140 energy_data[i] = w

141
142 if szt >= 0 :

143 s = np.append(s, szt)

144
145 x = np.array ([])

146 y = np.array ([])

147
148 for i in range(0, len(szt_data)) :

149 for j in range(0, len(energy_data[i])) :

150 x = np.append(x, szt_data[i])

151 y = np.append(y, energy_data[i][j])

152
153 #Fit a parabola to the graph

154 para_a = (max(y) - min(y)) / (max(x)**2)

155 para_c = min(y)

156 def parabola(x) :

157 return para_a * x**2 + para_c

158
159 print(’a = %f \nc = %f’ % (para_a , para_c))

160
161 plt.figure (1)

24

162 plt.plot(x, parabola(x))

163 plt.plot(x, y, ’r+’)

164 #plt.plot(z, w, ’bo ’)

165 plt.xlim(min(x) - .25, max(x) + .25)

166 plt.ylim(min(y) - .25, max(y) + .25)

167 plt.xlabel(’Total spin projection on z axis (units of \hbar)’)

168 plt.ylabel(’Energy eigenvalues ’)

169 plt.title(’Szt vs Energy spectrum N = %d’ % N)

170 plt.grid(which = ’both’)

171
172 plt.show()

5.2 AKLT Hamiltonian Exact Diagonalization Code

1 import numpy as np

2 import numpy.linalg as la

3 import scipy.misc as sc

4 import matplotlib.mlab as mlab

5 import matplotlib.pyplot as plt

6 import sys

7
8 #get N

9 N = int(sys.argv [1])

10
11 #Calculate the dimension of the Hilbert Space

12 d = 3**N

13
14 #build the complete basis for N spin ones.

15 def buildBasis () :

16 basis = np.zeros((d, N))

17 sztvals = np.zeros(d)

18 sztvals [0] = -N

19 for i in range(1, d) :

20 added = 0

21 for j in reversed(range(0, N)) :

22 if added == 0 :

23 if basis[i - 1][j] < 2 :

24 basis[i][j] = basis[i - 1][j] + 1

25 added = 1

26 else :

27 basis[i][j] = 0

28 else :

29 basis[i][j] = basis[i - 1][j]

30 sztvals[i] = sztvals[i] + basis[i][j] - 1

31
32 return basis , sztvals

33
34 basis , sztvals = buildBasis ()

35
36 #Find the sub -basis for a given value of SzT

37 szt = 1.0

38
39 def findFixedSztSubspace(szt) :

40 subspace = np.array ([])

41 for alpha in range(0, d) :

42 if sztvals[alpha] == szt :

25

43 subspace = np.append(subspace , alpha)

44
45 return subspace

46
47 #Define the relevant operators

48
49 def SziSzj(alpha , i, j) :

50 result = np.zeros (2)

51 spini = basis[alpha][i]

52 spinj = basis[alpha][j]

53
54 result [0] = (spini - 1) * (spinj - 1)

55 result [1] = alpha

56
57 return result

58
59 def SpiSmj(alpha , i, j) :

60 result = np.zeros (2)

61 spini = basis[alpha][i]

62 spinj = basis[alpha][j]

63
64 if spini == 2 or spinj == 0 :

65 return result

66
67 result [0] = 2

68
69 result [1] = alpha + 3 ** (N - i - 1) - 3 ** (N - j - 1)

70
71 return result

72
73 def innerProd(alpha , beta) :

74 if alpha == beta :

75 return 1.0

76 else :

77 return 0.0

78
79
80 #Pass each operator the state c|a> as [c, a]

81 #Returns <beta| SiDotSj |alpha >

82 def SiDotSj(alpha , i, j, beta) :

83 term1 = SziSzj(alpha , i, j)

84 term2 = SpiSmj(alpha , i , j)

85 term3 = SpiSmj(alpha , j, i)

86
87 sum = term1 [0] * innerProd(beta , term1 [1]) \

88 + 0.5 * (term2 [0] * innerProd(beta , term2 [1]) + term3 [0] \

89 * innerProd(beta , term3 [1]))

90
91 return sum

92
93 #Returns <beta| (SiDotSj)^2 |alpha >

94 def SiDotSjSquared(alpha , i, j, beta) :

95 SiSjOnAlpha = np.zeros ((3, 2))

96 SiSjOnBeta = np.zeros((3, 2))

97

26

98 SiSjOnAlpha [0] = SziSzj(alpha , i, j)

99 term = SpiSmj(alpha , i , j)

100 term [0] = 0.5 * term [0]

101 SiSjOnAlpha [1] = term

102 term = SpiSmj(alpha , j , i)

103 term [0] = 0.5 * term [0]

104 SiSjOnAlpha [2] = term

105
106 SiSjOnBeta [0] = SziSzj(beta , i, j)

107 term = SpiSmj(beta , i , j)

108 term [0] = 0.5 * term [0]

109 SiSjOnBeta [1] = term

110 term = SpiSmj(beta , j , i)

111 term [0] = 0.5 * term [0]

112 SiSjOnBeta [2] = term

113
114 sum = 0

115
116 for i in range(0, 3) :

117 for j in range(0, 3) :

118 sum = sum + SiSjOnAlpha[j][0] * SiSjOnBeta[i][0] \

119 * innerProd(SiSjOnBeta[i][1], SiSjOnAlpha[j][1])

120
121 return sum

122
123 #Construct the Heisenberg Hamiltonian for N spins

124 def buildHamiltonian () :

125 H = np.zeros((d, d))

126 for i in range(0, d) :

127 for j in range(0, d) :

128 val = 0.0

129 for k in range(0, N - 1) :

130 val = val + SiDotSj(j, k, k + 1, i) \

131 + 1.0/3.0 * SiDotSjSquared(j, k, k + 1, i)

132
133 H[i][j] = val

134
135 return H

136
137 #Construct the Heisenberg Hamiltonian for N spins

138 def buildBlockHamiltonian(szt) :

139 subbasis = findFixedSztSubspace(szt)

140 dim = len(subbasis)

141 H = np.zeros ((dim , dim))

142 for i in range(0, dim) :

143 for j in range(0, dim) :

144 val = 0.0

145 for k in range(0, N - 1) :

146 val = val + SiDotSj(subbasis[j], k, k + 1, subbasis[i]) \

147 + 1.0/3.0 * SiDotSjSquared(subbasis[j], k, k + 1, subbasis[i])

148
149 H[i][j] = val

150
151 return H

27

5.3 AKLT MPS Ground State Generation Code

1 import numpy as np

2 import numpy.linalg as la

3 import scipy.misc as sc

4 import matplotlib.mlab as mlab

5 import matplotlib.pyplot as plt

6 import sys

7
8 #Store the program parameters , N and Szt

9 N = int(sys.argv [2])

10 Szt = int(sys.argv [3])

11 al = int(sys.argv [4])

12 ar = int(sys.argv [5])

13
14 #Store the matrices

15 file = open(sys.argv [1])

16 lines = file.readlines ()

17
18 matrices = []

19
20 #First line tells us the dimension d, remove it after recording d.

21 d = int(lines [0])

22
23 lines [0:1] = []

24
25 tempMatrix = np.zeros((d, d))

26
27 for i in range(0, len(lines)) :

28 splitline = lines[i]. split()

29 for j in range(0, d) :

30 place = int(i % d)

31 tempMatrix[place][j] = float(splitline[j])

32
33 if (i + 1) % d == 0 :

34 matrices.append(tempMatrix)

35 tempMatrix = np.zeros((d, d))

36
37 print(matrices)

38
39 dim = 3 ** N

40 vector = np.zeros(dim)

41 state = np.zeros(N)

42 for i in range(0, dim) :

43 prod = np.eye (2)

44 for j in range(0, N) :

45 prod = np.dot(prod , matrices[int(state[j])])

46 vector[i] = prod[al][ar]

47 added = 0

48 # generate next state

49 for k in reversed(range(0, N)) :

50 if added == 1 :

51 break

52 if state[k] < 2 :

53 state[k] = state[k] + 1

28

54 added = 1

55 else :

56 state[k] = 0

57
58 file = open(’MPS_data/gs_eigenvectors.txt’, ’a’)

59 file.write(’N=%d \nal = %d ar = %d \n’ % (N, al, ar))

60 for val in vector :

61 file.write(str(val) + ’ ’)

62 file.write(’\n’)

5.4 AKLT Squared Norm Finding Code

1 import numpy as np

2 import numpy.linalg as la

3 import scipy.misc as sc

4 import matplotlib.mlab as mlab

5 import matplotlib.pyplot as plt

6 import sys

7
8 #Store the program parameters

9 N = int(sys.argv [2])

10 al = int(sys.argv [3])

11 ar = int(sys.argv [4])

12
13 #Store the matrices

14 file = open(sys.argv [1])

15 lines = file.readlines ()

16
17 matrices = []

18
19 #First line tells us the dimension chi , remove it after recording chi.

20 chi = int(lines [0])

21
22 lines [0:1] = []

23
24 tempMatrix = np.zeros((chi , chi))

25
26 for i in range(0, len(lines)) :

27 splitline = lines[i]. split()

28 for j in range(0, chi) :

29 place = int(i % chi)

30 tempMatrix[place][j] = float(splitline[j])

31
32 if (i + 1) % chi == 0 :

33 matrices.append(tempMatrix)

34 tempMatrix = np.zeros((chi , chi))

35
36
37 #Calculate E, E^N, and print out the norm

38 d = chi * chi

39 E = np.zeros((d, d))

40
41 for a1 in range(0, chi) :

42 for a2 in range(0, chi) :

43 for b1 in range(0, chi) :

44 for b2 in range(0, chi) :

29

45 sum = 0.0

46 for m in range(0, len(matrices)) :

47 sum = sum + matrices[m][a1][b1] * matrices[m][a2][b2]

48 E[a2 + chi * a1][b2 + chi * b1] = sum

49
50 w1 , v1 = la.eig(E)

51 EN = la.matrix_power(E, N)

52 print(str(N) + ’ & ’ + str(EN[al + chi * al][ar + chi * ar]) +

53 ’ & ’ + str(abs(max(w1) ** N - 2 * EN[al + chi * al][ar + chi * ar])))

30

References

[1] Affleck, I. ”Quantum Spin Chains and the Haldane Gap.” Journal of Physics: Condensed Matter
J. Phys.: Condens. Matter 1.19 (1989): 3047-072. Web. 3 May 2016.

[2] Ayeni, Babatunde M. ”Simulation of Braiding Anyons Using Matrix Product States.” ArXiv.
N.p., 20 Jan. 2016. Web. 2 May 2016.

[3] Eichler, C. ”Exploring Interacting Quantum Many-Body Systems by Experimentally Creating
Continuous Matrix Product States in Superconducting Circuits.” ArXiv. N.p., 16 Dec. 2016.
Web. 02 May 2016.

[4] Hastings, M. B. ”Entropy and Entanglement in Quantum Ground States.” ArXiv. N.p., 3 Jan.
2007. Web. 02 May 2016.

[5] Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge: Cambridge UP, 2000. Print.

[6] Regnault, Nicolas. ”Entanglement Spectroscopy and Its Application to the Quantum Hall Ef-
fects.” ArXiv (2015): n. pag. ArXiv. 26 Oct. 2015. Web. 2 May 2016.

[7] Schuch, Norbert. ”Condensed Matter Applications of Entanglement Theory.” ArXiv. N.p., 24
June 2013. Web. 02 May 2016.

[8] Schollwock, Urlich. ”The Density-matrix Renormalization Group in the Age of Matrix Product
States.” ArXiv. N.p., 3 Jan. 2011. Web. 02 May 2016.

31

