
Exploring Shor’s Algorithm

How quantum algorithms can be used to efficiently factorize integers

Ahmed Akhtar
Prof. Shivaji Sondhi

January 27, 2016



Abstract

This paper discusses Shor’s algorithm, an efficient factoring algorithm for quantum computers.
We start with an overview of the mathematics necessary to understand the reduction of factoring
to order-finding and then present the proof of this reduction. We then cover the Quantum Fourier
Transform, Phase Estimation, and Order-finding algorithms for a quantum device and how they
allow for efficient factoring. This work is written at a level comfortable for undergraduate students
of physics.



Introduction

Peter Shor’s landmark 1994 paper “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”, for which he earned the prestigious 1998 Nevanlinna
prize [1], was written at a time when quantum computing was in its infancy. It gave two efficient1

quantum algorithms, one for factoring and one for discrete logarithms, for which there still exist no
efficient solution on classical computers. The fastest known classical algorithm for factoring takes
time exponential in the input size: the number of bits needed to represent N .2 Written for under-
graduate students of physics, this paper will give an explanation of the former: Shor’s Algorithm
for factoring. It is a fundamentally probabilistic algorithm that, given an integer N , can give a
non-trivial factor of N in polynomial time with high probability.

The factoring problem can be stated as follows. Given a composite positive integer N , find a
non-trivial factor (neither 1 or N) of N . No efficient solution for arbitrary N has been found that
can be run on a classical (or digital) computer. Large numbers which are the product of a few, large
primes are hardest to factorize classically. The difficulty of this problem has inspired encryption
methods, such as the RSA (Rivest, Shamir, and Adleman) public key cryptosystem, that can only
be decrypted by finding the divisors of enormous semi-prime integers.

Apart from its applications in decryption and prime decomposition, Shor’s algorithm is fascinat-
ing because it challenges some fundamental principles of computer science. Your everyday, digital
computer is believed to be a universal computing device–that is, any other physical computing device
can be simulated efficiently (in the resources used by the device) by a digital computer3. However,
the fact that a computer based in quantum mechanics can solve certain problems faster than a digital
computer raises the question of whether quantum computers are in fact the more powerful, more
universal model of computation. On the other hand, if the belief is true, then there should exist
a way to simulate a quantum computer efficiently, which would then provide us with an efficient
algorithm for factoring on a classical computer [6].

Shor’s algorithm is the first concrete example that quantum mechanics has a vast computational
power. Since then, quantum computation has come a long way. New quantum algorithms for fac-
toring have been developed. As of today, the largest semi-prime integer factored on a quantum
computer is 56, 153 [7]. Will our smart-phones, tablets and laptops ever utilize quantum computa-
tion? However uncertain the future of technology is, it is undeniably promising.

Shor’s Algorithm: An Overview

Shor’s algorithm takes an L-bit integer N as input and outputs a single non-trivial factor of N in
O((lgN)3) = O(L3) operations or gates. It is an efficient solution to the factoring problem, because
the number of operations it requires to produce a factor is polynomial in L. One procedure is
summarized below, and the details and proofs of why this procedure works will follow after [4, pp
233-234].

1. If N is even, then return 2. Checking if a binary integer is even amounts to checking if the
least significant digit is a 0, so this operation takes O(1) operations. If N isn’t even, proceed
to the next step.

2. Check if N is the power of some integer greater than or equal to one. In other words, check if
N = ab for some a ≥ 1, b ≥ 2. This step is O(L3). If this step succeeds in finding a, b, then

1For what “efficient” means, see the appendix.
2The General Number Field Sieve is the current fastest classical algorithm for factoring large integers. It is

exponential in cube root of the number of bits needed. [2]
3The Quantitative Church-Turing Thesis (Vergis et. al [1986]) states this of a Turing machine which can be

efficiently simulated by a digital computer.

1



return a. Otherwise proceed to the next step.4

3. Randomly choose a integer x between 1 and N−1. If gcd(x,N) > 1, return the common factor,
otherwise move onto the next step. As we will show, computing the gcd(x,N) is O(L3).

4. If you’ve made it to this step, then you have found a number x co-prime to N . Thus we can
find the order r modulo N of x. With probability at least 1

2 , r is even and x
r
2 6= −1 mod N .

Thus, xr/2 is a non-trivial solution to y2 ≡ 1 mod N . This guarantees a non-trivial factor
from either gcd(xr/2−1, N) or gcd(xr/2 +1, N). We check both results to see if they’re factors
of N . If r was odd or x

r
2 ≡ −1 mod N then repeat step 3 [4, p 629].

If you did not follow the steps of the procedure above, don’t be disconcerted. The goal of this
paper is to give a complete explication of the physics and math behind this procedure. We will
discuss what a quantum computer is, the circuit model of quantum computation, the various parts
of Shor’s algorithm that allow you to complete the steps above, and the number theory behind
why this procedure works. The remarkable thing about Shor’s algorithm is the final step. In fact,
classically we can do all of the steps above efficiently except step 4. The defining advantage of Shor’s
Algorithm is the ability to find the order modulo N of an integer. Only on a quantum computer
can this be done efficiently.

Before moving on, suppose you wanted to know the complete prime factorization of some positive
composite integer N . Taking for granted that Shor’s algorithm finds a non-trivial factor in O(L3),
we can determine the complete prime factorization of a composite integer as follows.

First, let’s define a function f(n) that takes as input a positive integer n, and returns two non-
trivial factors of n (a, b). If n is prime, it prints n and returns (1, n). Let the recursive function
g(N) be defined as the following:

g(N) {
f(N)→ (a, b)
IF (a or b is 1)

STOP
ELSE
g(a)
g(b)

}

To summarize, we recursively factorize the factors of N until we end up with a complete prime
factorization. We know f is computable efficiently (up until we’ve found a prime factor, which can
be assumed probabilistically when Shor’s algorithm fails to find a factor in a reasonable amount of
time) and we know the number of primes in the decomposition is less than or equal to lgN , so a
trivial upper limit on the number of times the f will be called is (lgN)2 resulting in an algorithm
that gives the complete prime factorization with high probability in O(L5).

1 Number Theory, Group Theory, and the Reduction of Fac-
toring to Order Finding

The goal of this section is to convince you that the problem of factoring reduces to the problem of
order-finding. That is to say, if we can find the order of an element modulo N efficiently, we can
factor N efficiently. In the next section, we will see how Shor’s Algorithm for quantum computers
can compute order. Combining this with the classical algorithms in step 1, 2, and 3 above, we end

4This step is for the case that N = pm where p is an odd prime.

2



up with a complete and efficient factoring algorithm. To understand the reduction, some math is
needed.

1.1 Elementary Number Theory and the Greatest Common Divisor

The most important theorem in elementary number theory (at least for the purposes of this paper)
is the division algorithm. It states that for any pair of positive integers n,m, there exists a unique
pair of integers q, r s.t.

n = mq + r 0 ≤ r ≤ m− 1 (1)

In the equation above, we have divided n by m: n is the dividend, m is the divisor, q is the
quotient, and r is the remainder. We say that if r = 0, then m divides n. This is written symbolically
as m|n.

m|n ⇐⇒ ∃k ∈ Z|mk = n (2)

Fact 1: If c|a and c|b, then c divides any linear combination of a and b.

Proof: Let xa+yb = d be some linear combination of a and b. Since c|a and c|b, k1c = a and
k2c = b. Plugging this into the linear combination, we get d = xk1c+yk2c = (xk1+yk2)c =
k3c where k3 is some integer. From the preceding definition, we see that this means that
c|d. �

We can define the greatest common divisor of two positive integers, written symbolically gcd(a, b),
as the greatest positive integer that divides both a and b.

Computing the greatest common divisor is a key part of Shor’s algorithm. When we choose a
random x between 1 and N − 1 (step 3 of the algorithm), computing the gcd(x,N) will either give
us a common non-trivial factor of x and N , in which case our job is done, or it will equal 1, telling us
that x and N are co-prime. As we will see, if x and N are co-prime, then x has an order modulo N .
The first important fact that we should prove is that one can find the gcd(a, b) in time polynomial
in the number of bits needed to represent a and b. To do this, we will have to prove some facts
about the gcd first.

A priceless fact about the greatest common divisor is that the smallest positive linear combina-
tion of two integers is the same as their gcd.

Theorem 1: If a and b are integers and s = ax+by is their smallest positive linear combination5,
then gcd(a, b) = s

Proof: We will prove this by showing that s ≤ gcd(a, b) and gcd(a, b) ≤ s.
First, we will show gcd(a, b)|s, thus gcd(a, b) ≤ s. gcd(a, b) is the greatest common

factor of a and b, so gcd(a, b) divides both a and b. By Fact 1, gcd(a, b) will divide any
linear combination of a and b, so gcd(a, b)|s.

Second, I claim that s is a common factor of a and b, so s ≤ gcd(a, b). I will prove s|a.
Then by symmetry, s|b. �

Claim: s|a
We will do a proof by contradiction. Suppose a = sk + r where 1 ≤ r ≤ s − 1.
Then r = a − sk = a − (ax + by)k = (1 − kx)a − (bk)y. Thus, we see that
our assumption that s does not divide a implies the existence of a positive linear
combination of a and b less than s, which is impossible. � [4, p 627].

5Existence of s: Consider the set of positive linear combinations of a and b. The set is non-empty. From the
well-ordering principle, a smallest element of that set exists.

3



It follows from this theorem and Fact 1 that any common factor of a and b will divide gcd(a, b),
since gcd(a, b) is a linear combination of a and b.

We have one more statement left to prove before we can show the efficiency of computing the
gcd.

Lemma 1: Suppose we divide a by b (a and b are positive integers) and the remainder r is
non-zero. Then gcd(a, b) = gcd(b, r).

Proof: We will show each side of the equality divides the other.
From the division algorithm, we get r = a− bq. Therefore, r is a linear combination of

a and b. Thus gcd(a, b)|r (by F1). By definition, gcd(a, b)|b. Therefore, gcd(a, b)| gcd(b, r)
(by Theorem 1 and Fact 1).

We know that gcd(b, r)|b. From the division algorithm, a = bq + r, thus a is a linear
combination of b and r, therefore gcd(b, r)|a (by F1). Thus, gcd(b, r)| gcd(a, b). � [4, 628]

We now have everything we need to understand Euclid’s efficient algorithm for finding the gcd
of two integers. Suppose our two positive integers are a and b, and W.L.O.G. a ≥ b. Suppose we
compute q and r from the division algorithm by dividing a by b. If r = 0, then gcd(a, b) = b and
we are done6. Else, r = r1 6= 0, so gcd(a, b) = gcd(b, r1) (by Lemma 1). We now repeat the process
on b and r1, this time dividing b by r1. If the remainder r2 is 0, then gcd(b, r1) = r1 = gcd(a, b).
Otherwise we have gcd(a, b) = gcd(b, r1) = gcd(r1, r2). Repeating the process, we see that if the
first zero remainder is rm+1, then rm is gcd(a, b) [4, p 628].

As an example, let’s compute the gcd(1290, 635).

1290 = 2× 635 + 20 r1 = 20

635 = 31× 20 + 15 r2 = 15

20 = 1× 15 + 5 r3 = 5

15 = 3× 5 + 0 r4 = 0

With just four calculations of the division algorithm, we determined that gcd(1290, 635) = 5.
The swiftness of the algorithm is due to the fact that the remainders approach zero quickly.

We can put a bound on how fast the remainders approach zero by noticing that ri+2 ≤ ri/2. To
understand this, first consider the case where ri+1 ≤ ri/2. In this case, the bound holds since ri+2 ≤
ri+1

7. Now consider the case where ri+1 > ri/2. Dividing ri by ri+1, we get ri = 1× ri+1 + ri+2.
Thus, ri+2 = ri − ri+1 < ri/2.

Suppose that a is an L bit binary integer. Then b and all the remainders can be represented in L
bits. Since the size of the remainders gets at least halved every other step, the number of divisions
we need to do is O(2 lg a) which is also O(L). Each division takes O(L2) arithmetical operations, so
Euclid’s efficient algorithm for finding the gcd is O(L3) [4, p 629].

1.2 Modular Arithmetic, Co-primality, and Order

Two positive integers are co-prime if they don’t share any common factors greater than 1. In other
words, a and b are co-prime iff gcd(a, b) = 1.

Two integers a and b are equivalent modulo N if they have the same remainder r when divided
by N . Likewise, a and b are equivalent modulo N if their difference is a multiple of N . In fact,
we can partition the set of integers Z into N distinct classes where the members of each class are
equivalent to each other modulo N8.

6b|b and b|a, and the common factor can’t be bigger than b
7ri+2 is remainder from dividing ri by ri+1, so 0 ≤ ri+2 ≤ ri+1 from the division algorithm
8The three sets of integers that follow are referred to as the equivalence classes modulo 3.

4



a ≡ b mod N ⇐⇒ ∃k ∈ Z | a− b = kN (3)

...− 2N ≡ −N ≡ 0 ≡ N ≡ 2N... mod 4

....− 2N + 1 ≡ −N + 1 ≡ 1 ≡ N + 1 ≡ 2N + 1... mod N

...

....− 2N + (N − 1) ≡ −N + (N − 1) ≡ N − 1 ≡ N + (N − 1) ≡ 2N + (N − 1)... mod N

...− 6 ≡ −3 ≡ 0 ≡ 3 ≡ 6... mod 3

....− 5 ≡ −2 ≡ 1 ≡ 4 ≡ 7... mod 3

....− 4 ≡ −1 ≡ 2 ≡ 5 ≡ 8... mod 3

Equivalence plays the role of equality in modular arithmetic. In fact, it supersedes equality.
Two integers are equivalent if equal, but not always equal if equivalent. When thinking in terms of
remainders, we can see easily that equivalence is symmetric, transitive, and reflexive. It is symmetric,
because if a has the same remainder as b, then b has the same remainder as a. It is reflexive because
a has the same remainder as itself. It is transitive because if a has the same remainder as b, and b
has the same remainder as c, then a has the same remainder as c.

We can also substitute any integer in a modular equation with some other member of its equiva-
lence class. Suppose that ab ≡ c mod N and that a ≡ d mod N . Then db = (a−kN)b = ab−kbN .
Thus, db − ab = (kb)N , and so ab ≡ db ≡ c mod N . Likewise, if a + b ≡ c mod N and a ≡ d
mod N , then a + b = kN + d + b. Rearranging, (a + b) − (d + b) = kN , thus a + b ≡ d + b ≡ c
mod N .

The order r of an integer x modulo N is the smallest positive integer such that xr ≡ 1 mod N .
We write this symbolically as ord(x,N) = r or |x| = r. When does x have an order modulo N? It
is clear that some x do not have an order for a given N , e.g. x = 2, N = 4.

|x| = r ⇐⇒ r is the smallest positive integer s.t. xr ≡ 1 mod N (4)

It turns out that the answer to the previous question is closely tied to another question: When
does an integer have a multiplicative inverse modulo N? Given some integer a, we want to know
if ∃a−1 s.t. aa−1 ≡ 1 mod N . For example, if a = 2 and N = 4, then there is no inverse. This is
because if we multiply 2 by an odd number, we will get 2, and if we multiply by an even number we
will get 0.

Theorem 2: An integer x has an inverse modulo N iff it is co-prime with N .
Proof: If x is co-prime with N , we know gcd(x,N) = 1 or equivalently ax + bN = 1 for
some integers a, b. Rearranging, ax− 1 = bN , and so ax ≡ 1 mod N . The inverse of x is
a (and vice versa).

Now suppose that x has an inverse modulo N . Then x−1x ≡ 1 mod N , and therefore
x−1x − 1 = cN . Rearranging, we see that x−1x − cN = 1. The left hand side is a linear
combination of x,N . It must be the smallest positive linear combination of x,N since 1 is
smallest positive integer. From Theorem 1, gcd(x,N) = 1. � [4, p 627]

It follows that inverses are unique modulo N . Suppose b and b′ are two inverses of a. Then
ab ≡ 1 ≡ ab′ mod N . It follows from transitivity that ab ≡ ab′ mod N . Multiplying both sides by

5



a−1 (doesn’t matter which inverse), we see b ≡ b′ mod N . Similarly, if a−1 ≡ c mod N , then by
substitution c acts also as an inverse for a.

We now have everything we need to answer the first question: When does an integer have an
order modulo N?

Theorem 3: x has an order r modulo N iff x is co-prime with N .
Proof: If x has order r, then xr ≡ 1 ≡ x(xr−1) mod N , so x has an inverse modulo N .
By Theorem 2, x must be co-prime to N .

Suppose x is co-prime with N . Consider the powers of x modulo N: x, x2, x3... mod N .
Since there are only N distinct integers modulo N , there have to exist two equivalent pow-
ers of x. Suppose xn ≡ xm mod N , with n > m. Multiplying both sides by x−1 m-times,
we see xn−m ≡ 1 mod N . Thus, the set {v | v ∈ Z+, xv ≡ 1 mod N} is non-empty and
has a smallest element r by the well-ordering principle. It follows that there are r distinct
powers of x modulo N : x, x2, x3...xr−1, 1. �

Suppose that |x| = r modulo N . Then the following lemma holds:
Lemma 2: xn ≡ 1 mod N ⇐⇒ r|n
Proof: If r|n, then n can be written n = kr. It follows an ≡ akr ≡ ark ≡ 1k ≡ 1 mod N

If xn ≡ 1 mod N , it follows from the division algorithm that xqr+r
′ ≡ 1 mod N where

0 ≤ r′ ≤ r − 1. xqr+r
′ ≡ xqrxr

′ ≡ xr
′ ≡ 1 mod N . The remainder r′ cannot be positive

because then r would not be the order. Therefore, r′ = 0. �

The set of positive integers co-prime with N and less than N form a group under multiplication
modulo N . This group is designated Z∗N . The size of this group is written as a function of N , ϕ(N),
and is referred to as Euler’s totient function. We show that Z∗N meets all the requirements of a
group:

1. Associativity: Multiplication is associative by definition: ∀a, b, c ∈ Z∗N , a(bc) ≡ (ab)c mod N
�

2. Closed under multiplication: Let a, b ∈ Z∗N . We need to show their product is in the set.
Their product, ab mod N , is between 0 and N−1 so we know that it is less than N . From the
division algorithm, ab = (cN + 1)(dN + 1) = (cdN2 + cN + dN) + 1 = kN + 1. Rearranging,
ab− kN = 1. From T1, gcd(ab,N) = 1. �

3. Contains identity: The set contains 1, since 1 is co-prime with N. 1 is the multiplicative
identity. �

4. Closed under inverses: Let a ∈ Z∗N . Each element in the set has an inverse, from T2 (∃a−1).
From the same theorem, it is clear that a−1 must be co-prime with N since it also has an
inverse. We can choose the inverse so that it is between 1 and N − 1. Thus a−1 ∈ Z∗N . �

From Lagrange’s theorem, it follows that the order r of an element x (written ord(x) or |x|)
divides ϕ(N).

Fact 2: ord(x)|ϕ(N)
Proof: This is because the powers of x are a subgroup, and the size of the group is r, and
according to Lagrange’s theorem the size (also termed ’order’) of the subgroup must divide
the size of the group9.

The totient function ϕ(N) can be calculated using the prime decomposition of N . From the
Fundamental Theorem of Arithmetic,

9A proof of Lagrange’s theorem can be found in any introductory group theory text. See Pinter in the references
for a lucid introductory text on Group Theory.

6



N = pα1
1 pα2

2 ...pαll where the pi are prime

First consider the case where N = p, where p is prime. Since every positive integer less the
p is co-prime with p, ϕ(p) = p − 1. Now consider the case where N = pm. The only positive
integers less than N that are not co-prime with N are multiples of p: p, 2p, 3p...pm−3p, pm−2p, and
(pm−p) = (pm−1−1)p. Thus, the totient function is ϕ(pm) = pm−1− (pm−1−1) = pm−1(p−1).[4,
p 631]

To consider the general case for N , we will first prove that the totient function factorizes if N is
the product of co-prime integers a and b.

Lemma 3: ϕ(ab) = ϕ(a)ϕ(b) if a and b are co-prime.
Proof: Every pair of numbers (xa, xb) where xa is between 1 and a and xb is between 1
and b inclusive has a one-to-one correspondence mapping to an integer x between 1 and
ab, by the Chinese Remainder Theorem10 [4, p 631].

The xa co-prime with a form a group, Z∗a. The xb co-prime with b form a group, Z∗b .
Their direct product Z∗a ×Z∗b (the pairs (x′a, x′b) where x′a and x′b are group elements from
Z∗a and Z∗b respectively) is a group. Similarly, the x co-prime with ab are a group, Z∗ab. We
want to show these groups have equal size by finding a one-to-one correspondence mapping
between them.

We can use the function f(x) = (xa, xb) used in the Chinese Remainder Theorem in
the appendix but relabel it f∗ to signify that it only acts on the sets in the groups. First
we show that it maps x ∈ Z∗ab to Z∗a × Z∗b . x can be written as dx = 1− c(ab) by T2.

x = xabb
−1 + xbaa

−1 − k(ab)

1 = c(ab) + xadbb
−1 + xbdaa

−1 − kd(ab)

1 = (cb+ xbda
−1 + kdb)a+ (dbb−1)xa

1 = (ca+ xadb
−1 + kda)b+ (daa−1)xb

We see that xa is co-prime with a and xb is co-prime with b if x is co-prime.11 Thus,
the function f∗ maps from Z∗ab to Z∗a × Z∗b injectively. We know it’s injective because the
function f is injective over the whole domain, so it must be over some subset as well.

To show it’s surjective, we just need to show that if xa and xb are co-prime with a and
b respectively, then x is co-prime with ab.

If xa is co-prime with a, then cxa + da = 1 for some c, d. We know that x = xa + ka
for some k. Rearranging, we see that x is co-prime with a. By symmetry, x is co-prime
with b. Since it is co-prime with a and b, it must be co-prime with ab12. So f∗ must be
surjective on Z∗a × Z∗b .

Since f∗ is one-to-one correspondence, the size of Z∗ab must be the same size as Z∗a×Z∗b =
ϕ(a)ϕ(b). Thus, ϕ(ab) = ϕ(a)ϕ(b). �

If N has a prime factorization pα1
1 pα2

2 ...pαll , then Theorem 4 follows trivially from Lemma 3.
Theorem 4:

ϕ(N) =

l∏
i=1

pαi−1i (pi − 1)

We will need to utilize one final theorem before moving on to the reduction.

10See Appendix
11Alternatively, this tells us ϕ(ab) ≤ ϕ(a)ϕ(b). When we determine that f∗ surjective in the second half of this

proof, we show that ϕ(ab) ≥ ϕ(a)ϕ(b). Thus, ϕ(ab) = ϕ(a)ϕ(b).
12Since x is co-prime with a, it shares no factors with a. Likewise, it shares no factors with b. It follows that it

cannot share any factors with ab. Think of a and b in terms of their prime decompositions if this is confusing.

7



Theorem 5: Z∗pα , where p is an odd prime, is cyclic [4, 632].
If a group is cyclic, every element of it can be written as a positive power of some element

in the group called the generator. In other words, ∃g ∈ Z∗pα s.t. ∀x ∈ Z∗pα , x ≡ gk mod pα for
1 ≤ k ≤ ϕ(pα). Every element in the set can be identified uniquely by k.

1.3 Factoring Reduces to Order Finding

We wish to find an algorithm that produces a non-trivial factor of N . We will show that given the
ability to find the order r modulo N of a positive integer x efficiently, one can find a non-trivial
factor for N efficiently.

Here is an overview of how the algorithm works: The algorithm begins by choosing an x randomly
from 1 to N − 1. There needs to be an efficient way to find a factor if x is co-prime with N , which
happens with a high-probability if N is the product of a few large primes. Supposing x is co-prime
with N , one can show that it is likely that gcd(xr/2 − 1, N) or gcd(xr/2 + 1, N) will return a non-
trivial factor for N . Due to the efficiency of gcd and the high probability of success, choosing x just
a few times guarantees a non-trivial factor for N in polynomial time!

We will need to prove some simple theorems to understand why this procedure works.
Lemma 4: Let y ∈ Z∗N , and suppose y is a non-trivial solution to x2 ≡ 1 mod N (that is,

y 6= ±1 mod N), then gcd(y + 1, N) or gcd(y − 1, N) will give a non-trivial factor of N .
Proof: y2 ≡ 1 mod N implies that y2 − 1 = kN = (y+ 1)(y− 1). Since N |(y+ 1)(y− 1),
it must share a common factor with y + 1 or y − 1 or both. The only troublesome case is
if y = N − 1, because then gcd(y + 1, N) = N and gcd(y − 1, N) = 1 if N is odd13. By
assumption, y 6= N − 1, so the theorem works.[4, p 633]. �

Lemma 5: Let p be an odd prime and let y be a randomly chosen element from Z∗pα . Then with

probability exactly 1/2, the largest power of 2, 2d, which divides ϕ(pα) also divides r.
Proof: From Theorem 4, ϕ(pα) = pα−1(p− 1) and so d > 0 since the size of the group is
even. From Theorem 5, y can be written as gk for some k, 0 ≤ k ≤ ϕ(pα)− 1. k uniquely
identifies each element in the group.

Consider the case where k is odd. (gk)
r ≡ 1 ≡ gkr mod pα by definition. Since ϕ(pα)

is the order of g, ϕ(pα)|kr (by L2). k is odd, therefore it contains no factors of 2, and thus
2d|r.

Now consider the case where k is even. Noticing that gϕ(p
α)k/2 ≡ 1 ≡ (gk)

ϕ(pα)/2

mod pα, we conclude that r|ϕ(pα)/2, so 2d cannot divide r.
Since k has equal probability of being even or odd (picking y is like picking k and there

are an even number of allowed k values), we see that there is a probability of 1/2 that 2d

divides r and 1/2 that it doesn’t [4, 633]. �.

Theorem 6: Let N = pα1
1 pα2

2 ...pαmm be an odd composite positive integer. Suppose x is chosen
randomly from Z∗N and has order r. Then the probability that r is odd or xr/2 ≡ −1 mod N is less
than or equal to 1

2m−1 .
Proof: From the Chinese Remainder Theorem, picking a random x is the same as picking
a random xj ∈ Z∗

p
αj
j

for all j. Define rj as the order modulo p
αj
j of xj , 2dj as the largest

power of 2 dividing rj , and 2d as the largest power of 2 that divides r.
By definition, xr ≡ 1 mod N . Thus N |(xr − 1), and so p

αj
j |(xr − 1). Thus, xr ≡ 1

mod p
αj
j . From the CRT, this means that xrj ≡ 1 mod p

αj
j , and so rj |r ∀j (by L2).

We first consider the case where r is odd. Since r is odd, each of the rj must be odd,
and so dj = 0 for each of the j.

13If it was even, we already know a non-trivial factor: 2

8



Next, if r is even and xr/2 ≡ −1 mod N , we see that x
r/2
j ≡ −1 mod pα

j

j ∀j. Thus, it
cannot be that rj |(r/2) (otherwise the RHS would be 1). But since rj |r, it follows dj = d
∀j.

From Lemma 5, p(dj = d′) = 1/2 where 2d
′

is the largest power of 2 which divides
ϕ(p

αj
j ). The total probability must be 1, so p(dj 6= d′) = 1/2. It follows that the probability

of dj taking on any value is at most 1
2 .

Putting it all together, p(xr/2 ≡ −1 mod N) ≤ p(d1 = d2 = ...dm = d) ≤ 1
2m .

The probability dj = 0 is at most 1/2, so p(r is odd) ≤ 1
2m . Adding the probabilities,

p(xr/2 ≡ −1 mod N or r is odd) ≤ 1
2m−1 [4, p 634]. �

We see that Theorem 6 implies

p(r is even and xr/2 6= −1 mod N) ≥ 1− 1
2m−1

Thus, in picking an element randomly from Z∗N, we have a probability of at least 1/2 of getting
a factor from that element (by substituting xr/2 with y in Lemma 4).

This presents huge advantages when factoring large, semi-prime integers. Any classical algorithm
would be exponential in the L, essentially checking every number between 1 and

√
N , but the chance

of Shor’s algorithm failing to find a factor of a semi-prime integer after being computed just 5 times
is less than 5%, and each run is O(L3).

All of this hinges on the ability to calculate order efficiently, of course. On a classical computer,
this is currently impossible to do efficiently. Using quantum mechanics, Shor was able to show that
it can be done–but first you must have a quantum computer.

2 The Qubit and Quantum Circuits

2.1 Quantum equivalents of bits and logic gates

In classical computation, the smallest piece of information is a bit. It can be either 0 or 1. Everything
on your computer is represented by sequences of zeros and ones which are interpreted by your machine
to be numbers, text, addresses, etc.

In quantum computation, the smallest piece of information is the qubit. The defining feature of
a quantum computer is that it manipulates information in the form of qubits. A quantum computer
can also have classical components: there are certain problems that your average digital computer is
very good at solving and a quantum computer can utilize a classical computer for such subproblems.

A qubit can be in a superposition of 0 and 1. One simple model for the qubit could be a spin
half particle in the Sz basis. In this model, we can say that the qubit is in a 0 state when it is spin
up and a 1 state when it is spin down. Thus, in the Sz basis

|0〉 →
(

1
0

)
|1〉 →

(
0
1

)
Classically, a logic gate is a mapping from one set of bits to another. For example, the logic gate

AND takes as input two bits and outputs 1 iff both inputs are 1. Another example is the CNOT or
controlled-NOT gate, which has one target bit, and one control bit. If the control bit is on, then the
target bit is flipped, otherwise both bits pass through unchanged. The first output has the value of
the control bit, and the second output has the value of the sum of the two input bits modulo two.
Unlike the previous gate, CNOT is an invertible, or reversible, logic gate. Given the output, you
know the input. In other words, there isn’t any information loss.

9



C T C (C ⊕ T)
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 1: The truth table for CNOT. If U was the equivalent quantum-CNOT operator, it would act
on control qubit |c〉 and target qubit |t〉 as U |c〉 |t〉 = |c〉 |c⊕ t〉.

Landauer’s principle says that for every bit of information loss, there is at least some fixed, finite
energy dissipation proportional to the temperature14[3]. Thus, logic gates that are reversible must
be energy efficient because they have no information loss. We have a motivation to build our circuits
out of logic gates that are reversible, because then over each operation, there will be no energy loss,
and so overall the circuit will be energy efficient. A proof of Landauer’s principle will not be provided
as it is secondary to understanding Shor’s algorithm.

The natural choice for operators, or logic gates, on a quantum computer are unitary operators.
Unitary operators are diagonalizable because they are normal (by Spectral Decomposition), and
therefore they are easier to implement. Also, unitary operators are by definition invertible. Any
quantum circuit built out of unitary operators will be energy efficient.

Def: An operator U is unitary ⇐⇒ U†U = I

Besides being energy efficient, the Solovay-Kitaev theorem says that any unitary operator can
be approximated to arbitrary accuracy through a finite number of fixed, universal two-level unitary
operators [4, Ch 4]. What this means physically is that given some complicated quantum logic gate
that takes n bits as input and outputs n bits, one can construct this quantum logic gate out of some
small set of logic gates that only act on one or two qubits at a time. As long as one knows how to
construct those universal two-level unitary operators, one can construct any unitary operator. The
take away from this is that, in theory and in practice, unitary operators are the natural choice for
logic gates on a qubit system. Again, the proof for this is nontrivial and only plays a secondary role
in understanding Shor’s Algorithm, so we will not cover it.15 For the remainder of this paper, if we
have a unitary operator, we will assume it to be implementable.

Sets of qubits combine how they would in regular quantum mechanics: via a tensor product.
The computational basis of a set of t qubits is given by the tensor product of t qubit basis states.

|1〉1 ⊗ |0〉2 ⊗ |1〉3 ⊗ |1〉4 ⊗ ... |0〉t ≡ |1011...0〉
|0〉1 ⊗ |0〉2 ⊗ |1〉3 ⊗ |0〉4 ⊗ ... |0〉t ≡ |0010...0〉
|1〉1 ⊗ |1〉2 ⊗ |1〉3 ⊗ |1〉4 ⊗ ... |1〉t ≡ |1111...1〉

A set of qubits (or a register) measured in the first state means the first qubit is 1, the second
qubit is 0, the third qubit is 1, the fourth qubit is 1, and so on. There are 2t basis states. We can
think of each basis state as representing some binary integer. Thus, it is often useful to write the
basis states in the form on the right. For example, the last basis state represents the integer 2t − 1.

One of the advantages of the qubit is its potential to store far more information than a classical
bit. A classical bit can have only two distinct values, 0 or 1. Since the qubit is an arbitrary unit
vector in a 2-d Hilbert space, there are an infinite number of distinct (but non-orthogonal) qubit
states. Suppose we have a state |ψ〉. Then |ψ〉 can be written as

14A minimum energy dissipation of kT ln 2 per bit of information lost.
15A proof of it can be found in chapter 4 of Nielsen and Chuang.

10



rαe
iθα |0〉+ rβe

iθβ |1〉

≡ rα |0〉+
√

1− r2αei(θβ−θα) |1〉

In the second line, we normalize and ignore an overall phase. Replacing rα with cos θ2 and θβ−θα
with φ, we can see that it takes two independent real parameters to define a qubit. In fact, each
qubit maps to a real, unit-length 3-vector ~r parameterized by polar angle θ and azimuthal angle φ.
The set of these 3-vectors is called the Bloch sphere [4, p 174].

cos θ2 |0〉+ sin θ
2e
iφ |1〉 → (sin θ cosφ, sin θ sinφ, cos θ)

We see that when |ψ〉 is |0〉 or |+z〉, ~r → (0, 0, 1), and when |ψ〉 is |+x〉, ~r → (1, 0, 0) and when
|ψ〉 is |+y〉, ~r → (0, 1, 0).

Whether we really have access to the information stored in a qubit (in the form of its two real
parameters) is a different question. Any sort of measurement destroys that information. How-
ever, quantum algorithms often take advantage of the fact that nature seems to keep track of this
information for us.

2.2 The Quantum Fourier Transform

Shor’s algorithm is successful because it can find the multiplicative order modulo N of an integer
efficiently. One of the key quantum circuits behind his algorithm is the quantum Fourier transform.

The quantum Fourier transform on an orthonormal basis ofN states labelled |0〉 , |1〉 , |2〉 , ... |N − 1〉
acts linearly on the basis vectors of that state as follows:

|j〉 → 1√
N

N−1∑
k=0

e
2πijk
N |k〉 (5)

We can show that the operator is unitary because it preserves norms. Because the operator is
unitary, we know that it can be implemented using our universal 2-level unitary operators. Thus,
the quantum Fourier transform is a realizable quantum circuit.16

Proof: The quantum Fourier transform is unitary
It suffies to show 〈m|U†U |n〉 = δmn

〈m|U†U |n〉 =
1√
N

N−1∑
k′=0

e−
2πimk′
N 〈k′| 1√

N

N−1∑
k=0

e
2πink
N |k〉

=
1

N

N−1∑
k′=0

N−1∑
k=0

e
2πi(n−m)k′

N 〈k′|k〉

=
1

N

N−1∑
k′=0

e
2πi(n−m)k′

N

=
1

N
Nδmn

= δmn �

Consider an n-qubit state. The number of basis states of the n-qubit system is 2n = N . The
integers that each basis state represents in binary go from 0 to N − 1. Using the numbering of basis

16See part B of the Appendix if the fourth line of the proof seems sketchy

11



states defined in the quantum Fourier transform, |0〉 , |1〉 , |2〉 ... |j〉 ... |N − 1〉, the state |j〉 refers to
the qubit basis state |j1j2j3...jn〉 that has the binary representation of the integer j. For example,
the state |5〉 in the quantum Fourier basis is the qubit basis state |000...101〉.

How does a n-qubit basis state transform after the quantum Fourier transform is applied to it? It
turns out that the resulting state has a useful form in terms of the individual bits that make up the
state. We will use this form of the quantum Fourier transform when deriving the Phase Estimation
algorithm, which can be used for order finding.

|j〉 =
1√
N

N−1∑
k=0

e
2πijk
N |k〉

=
1√
2n

2n−1∑
k=0

e
2πijk
2n |k〉

=
1√
2n

1∑
k1=0

1∑
k2=0

1∑
k3=0

...
1∑

kn=0

e
2πij(∑n

l=1 2n−lkl)
2n |k1k2k3....kn〉

In the second equation we replaced N with 2n. In the third equation, we are replacing k with
its corresponding binary representation k1k2...kn, with ki representing the ith bit given by the ith

qubit in the tensor product space.

|j〉 =
1√
2n

1∑
k1=0

1∑
k2=0

...

1∑
kn=0

(
e2πij2

−1k1 |k1〉
)
⊗
(
e2πij2

−2k2 |k2〉
)
⊗ ...

(
e2πij2

−nkn |kn〉
)

We can now separate the individual sums over each bit of k, and represent the state as a product
state. The first term of this new product state will represent what the first bit of the input, |j1〉,
goes to when the quantum Fourier transform is applied to |j〉.

=
1√
2

(
|0〉+ e2πij2

−1

|1〉
)
⊗ 1√

2

(
|0〉+ e2πij2

−2

|1〉
)
⊗ 1√

2

(
|0〉+ e2πij2

−3

|1〉
)
⊗ ... 1√

2

(
|0〉+ e2πij2

−n
|1〉
)

Thus our quantum Fourier transform circuit will map the first qubit to the first term in the
product above, the second qubit to the second term in the product, and so on. However, we can
simplify our representation even further.

The integer j in binary is represented by its bits j1j2j3...jn each of which can be 0 or 1. Dividing
j by some power of two, 2k, we see that 2−kj = j1j2...jn−k.jn−k+1...jn (if this is confusing, think
about the decimal equivalent. When we divide by 10k, we are moving the decimal place back k

places). Writing j as the sum of its integer and fractional part, we see the coefficient e2πi(j2
−k) =

e2πi(j1j2...jn−k)e2πi(0.jn−k+1...jn) where the fractional part is converted back to decimal the normal
way by dividing each bit by the appropriate power of 2. Since the first term in the product will be a

e2πi = 1 raised to some integer power, we can replace e2πij2
−k

with e2πi(0.jn−k+1...jn). The quantum
Fourier transform can now be written as

1√
2

(
|0〉+ e2πi(0.jn) |1〉

)
⊗ 1√

2

(
|0〉+ e2πi(0.jn−1jn) |1〉

)
⊗ ... 1√

2

(
|0〉+ e2πi(0.j1j2...jn) |1〉

)
(6)

We now know what each bit will go to in the quantum Fourier transform in terms of the other
bits. To implement the gate, we first need to define a unitary operator

12



Rk ≡
(

1 0

0 e2πi2
−k

)
We will also need another important quantum operator called the Hadamard gate.

H ≡ 1√
2
(σX + σZ) = 1√

2

(
1 1
1 −1

)

Figure 1: The Quantum Fourier Transform Subroutine [4, p 219]

Lets follow the action of the circuit on the first bit. First the Hadamard gate is applied on the
first qubit. If |j1〉 = |0〉, then H |1〉 = 1√

2
(|0〉+ |1〉), and if |j1〉 = |1〉 then H |1〉 = 1√

2
(|0〉 − |1〉).

Thus, we can see that the action of the Hadamard gate on the qubit is actually

H |j1〉 = 1√
2

(
|0〉+ e2πi(j1/2) |1〉

)
= 1√

2

(
|0〉+ e2πi(0.j1) |1〉

)
Now we follow the operation of the R operators. Each adds a phase onto the |1〉 eigenstate

controlled by a different bit of input. We can write the effect of the R2 operator controlled by the
2nd qubit on the 1st qubit as the matrix below, because if j2 = 0, then the operator goes to the
identity. Otherwise, if j2 = 1, it does its defined operation. Thus, we can see that the application
of the phase operators R on the first qubit results in the state 1√

2

(
|0〉+ e2πi(0.j1j2...jn) |1〉

)
.(

1 0

0 e2πij22
−2

)
Repeating the process for each bit and comparing the output with (6), we see that the circuit

above gives the Fourier transform but with the bits in the reverse order. To put them in the correct
order, we need n

2 CROSSOVER17 gates, with each CROSSOVER gate using a small, finite number
of universal gates to implement. The first qubit requires n gates, the second qubit requires n − 1,
the third qubit requires n− 2, and so on. Adding up the gates in the above circuit, we get n2 gates.
Therefore, the cost of the quantum Fourier transform in the implementation above is O(n2), where
n is the number of qubits [4, pp 216-220]. We will use our efficient implementation of the QFT to
implement phase-estimation, which is a key step towards order finding.

2.3 Phase Estimation

Next, we move onto the Phase Estimation algorithm. Phase estimation determines the eigenvalue of
a unitary operator given the operator and the eigenvector associated with that eigenvalue. It utilizes
the inverse quantum Fourier transform, which is found by just taking the Fourier transform circuit
in reverse and flipping each gate with its adjoint.18 Mathematically, the inverse QFT is the adjoint
of the QFT operator.

17The CROSSOVER gate allows you to swap qubits.
18This is the general procedure for finding the inverse circuit to any quantum operation. Note that the inverse QFT

will be just as efficient (in the number of gates) as QFT.

13



Phase Estimation: Given unitary operator U , eigenvector |us〉 s.t. U |us〉 = e2πiϕs , estimate
ϕs

19.

We have two registers, the first contains t qubits and the second register contains the number
of bits necessary to store |us〉. At the end of the operation, the first register will store ϕs. We also
need to have a method for generating U raised to distinct powers of two from 20 to 2t−1. For now,
assume that we can efficiently generate these t gates. The number of bits in the first register, t, will
be the proportional to the accuracy of our estimate of the phase. The phase ϕs ∈ [0, 1) because all
complex numbers of modulus one can be represented by their angle in the complex plane.

Figure 2: Part of the Phase Estimation Algorithm. To complete the algorithm, we act with U†QFT
on the first register [4, p 222]

Following the last qubit, we see that it acted on by the Hamadard operator from the zero state.
This brings it to the state 1√

2
(|0〉+ |1〉). Note that |us〉 → e2πiϕs |us〉 if its control bit is |1〉 and

otherwise is unaffected. Since the last qubit has equal probability of being spin up and spin down,
we can write the product state of the last qubit-second register system after the action of the first
controlled-U gate as

1√
2

(
|0〉 |us〉+ |1〉 (e2πiϕs |us〉)

)
= 1√

2

(
|0〉+ e2πi(2

0ϕs) |1〉
)
⊗ |us〉

The second controlled-U gate is controlled by the second to last qubit, and will add a phase of
(e2πiϕs)2 = e2πi(2

1ϕs) if the second to last qubit is in the state |1〉. Thus the tensor product state of
the second to last qubit, last qubit, and 2nd register is

1√
2

(
|0〉+ e2πi(2

1ϕs) |1〉
)
⊗ 1√

2

(
|0〉+ e2πi(2

0ϕs) |1〉
)
⊗ |us〉

Notice that this state gives equal probability of no phase being added, the first phase being
added, the second phase being added, and both phases being added (as expected). Continuing with
the pattern, the final state of the first register is given by

1√
2

(
|0〉+ e2πi(2

t−1ϕs) |1〉
)
⊗ 1√

2

(
|0〉+ e2πi(2

t−2ϕs) |1〉
)
⊗ ... 1√

2

(
|0〉+ e2πi(2

0ϕs) |1〉
)

19It should be noted that all eigenvalues of a unitary operator have modulus 1.

14



We can rewrite the state above as

1

2t/2

2t−1∑
k=0

e2πiϕsk |k〉 (7)

The goal is to represent ϕs in t bits. Supposing ϕs = 0.ϕs1ϕs2...ϕst, we see that multiplying the
phase by 2t−1 moves the decimal point over t− 1 places, resulting in ϕs1ϕs2...ϕst−1.ϕst, and we can
therefore rewrite the product state in the first register. In this form, it is easy to see that this is
precisely the Fourier transform of |ϕs〉 = |ϕs1ϕs2...ϕst−1ϕst〉. To get |ϕs〉, we simply do the inverse
Fourier transform on the result of the first register.

1√
2

(
|0〉+ e2πi(0.ϕst) |1〉

)
⊗ 1√

2

(
|0〉+ e2πi(0.ϕst−1ϕst) |1〉

)
⊗ ... 1√

2

(
|0〉+ e2πi(0.ϕs1ϕs2...ϕst−1ϕst) |1〉

)

(U†QFT ⊗ I)
1

2t/2

2t−1∑
k=0

e2πiϕsk |k〉 |us〉 = |ϕ̃〉 |us〉 (8)

Where ϕ̃ is the t-bit representation of the phase of the eigenvalue ϕ. Note that if ϕs could be
written exactly in t-bits (as we assumed before), then doing a measurement in the computational
basis after the inverse QFT would give ϕs exactly. If it cannot be written in this manner, however,
we end up with a high probability of measuring ϕs within some error, given below [4, pp 220-222].

In order to get ϕs to n-bit accuracy with probability at least 1− ε, we choose to have20

t = n+

[
lg

(
2 +

1

2ε

)]
(9)

Thus, we have exhibited an algorithm that will estimate the phase of the eigenvalue of a unitary
operator. What’s more, we can increase the accuracy and the probability of success by adding more
qubits. The next step is to show that the Phase Estimation algorithm is polynomial in the number of
gates used. The inverse quantum Fourier transform requires as many gates as the quantum Fourier
transform which is quadratic in the number of bits, so we only need to show that we can find the t
powers of U in polynomial time. Whether this is possible depends on U itself.

2.4 Efficient Order Finding through Quantum Algorithms

The success of Shor’s Algorithm is its ability to do order-finding efficiently. The Order-finding
algorithm, given positive integers x, N , returns the order r of x modulo N .

Presently, no classical algorithm can find the order of x efficiently. That is, no classical algorithm
that can find r is in O(Lk) for some k ∈ Z, where L is the number of bits needed to store N i.e.
L ≈ lgN .21 However, Shor’s algorithm can find r in O(L3).

The Order-finding algorithm utilizes the Phase Estimation algorithm and another operator Ux
which does the following:

Ux |y〉 = |xy mod N〉with y ∈ {0, 1}L (10)

First, we note that Ux isn’t a surjective mapping from {0, 1}L to {0, 1}L, and so it can’t be
unitary (unitaries are bijective by definition). As defined above, Ux can only map to vectors in the
range |0〉 , |1〉 , ... |N − 1〉. Next, we consider the first N values of y. Let 0 ≤ m,n ≤ N − 1 and
m 6= n. Then

20Chapter 5 of [4] gives a detailed explanation for this result.
21In general, L =Floor(N) + 1, which is roughly lgN .

15



Ux |m〉 = |xm mod N〉 = |c1 mod N〉
Ux |n〉 = |xn mod N〉 = |c2 mod N〉

Could Ux map |m〉 and |n〉 to the same vector? Then c1 = c2 mod N , and therefore xm = xn
mod N . We know x is co-prime to N by definition, so it has an multiplicative inverse modulo N.
Multiplying both sides by this inverse gives m = n mod N . However, since m and n are between
0 and N − 1, m = n. This is a contradiction, so we know that when 0 ≤ y ≤ N − 1, Ux will map
bijectively to another vector in that range. When y is outside that range, we require that Ux map
to y so that the function is invertible ∀y.

With this new requirement, we can check if Ux is unitary. The proof will follow the same form
as the proof for the QFT. If m,n are between 0 and N − 1, then

(
U†xUx

)
mn

= 〈m|U†xUx |n〉
= 〈xm mod N |xn mod N〉
= δ(xm mod N),(xn mod N) = δmn

Otherwise, if m,n are both N or greater

(
U†xUx

)
mn

= 〈m|U†xUx |n〉 = 〈m|n〉 = δmn

And finally, if m is in one range, and n is in another, then obviously
(
U†xUx

)
mn

= 0 because each
will get mapped to a different part of the image. �

The Order-finding algorithm works by applying the Phase Estimation algorithm on Ux and one
of its eigenvectors |us〉. So what are the eigenvectors of Ux? Consider the vector defined below.
It is clear that there are r unique eigenvectors of this form, for s = 0, 1, 2...r − 1. These are the
eigenvectors for the subspace in which Ux acts non-trivially. We can confirm that it’s an eigenvector
by multiplying it by Ux.

|us〉 ≡
1√
r

r−1∑
k=0

exp

[
−2πisk

r

]
|xk mod N〉 (11)

Ux |us〉 =
1√
r

r−1∑
k=0

exp

[
−2πisk

r

]
|xk+1 mod N〉

=
1√
r

r−1∑
k=1

exp

[
−2πis(k − 1)

r

]
|xk mod N〉

= e2πis/r

(
1√
r

r−1∑
k=1

e−2πisk/r |xk mod N〉+
1√
r
e0 |x0 mod N〉

)

= e2πis/r

(
1√
r

r−1∑
k=0

e−2πisk/r |xk mod N〉

)
= e2πis/r |us〉

Ux |us〉 = e2πis/r |us〉 (12)

16



The Phase Estimation algorithm, given Ux and |us〉, would find (s/r) from which we hope to
determine r, the order of x modulo N . However, there are some obstacles to this: first, we need an
efficient way to do phase estimation; second, we need to be able to prepare |us〉 without knowledge
of r (since that is what we are trying to find); third, once we have some n-bit approximation of
(s/r), how do we get r?

It turns out that the first challenge has a solution. Using methods of reversible computation,
we can compute the t gates required for phase-estimation of Ux requiring only O(L3) additional
operations. For the purposes of understanding Shor’s algorithm, this is as much as we need to
know22 [4, p 228].

To answer the second challenge, we note that

1√
r

r−1∑
s=0

|us〉 = |1〉 (13)

In fact, this is a particular case of a more general observation that we will prove below.

1√
r

r−1∑
s=0

e2πisk/r |us〉 = |xk mod N〉 (14)

1√
r

r−1∑
s=0

e2πisk/r |us〉 =
1√
r

r−1∑
s=0

e2πisk/r
1√
r

r−1∑
k′=0

exp

[
−2πisk′

r

]
|xk
′

mod N〉

=
1

r

r−1∑
k′=0

|xk
′

mod N〉
r−1∑
s=0

e2πis(k−k
′)/r

=
1

r

r−1∑
k′=0

|xk
′

mod N〉 (rδk,k′) = |xk mod N〉 �

Plugging in k = 0 for (14), we get (13). Thus, the state |1〉 is an equal superposition of the
eigenstates of the operator Ux.

Now, consider t = 2L+ 1 + lg
(
2 + 1

2ε

)
bits prepared in the |0〉 state for the first register of phase

transformation algorithm and in the second register, which only needs L qubits, we put the state |1〉.
After the application of the first unitary, U20

x , the tensor product of the last qubit and the second
register will be

1√
2

(|0〉 |1〉+ |1〉Ux |1〉)

1√
2

(
|0〉 |1〉+ |1〉 1√

r

r−1∑
s=0

e2πis/r |us〉

)
1√
2

(
|0〉 |1〉+ |1〉 |x1 mod N〉

)
Where in the second line we used (13) combined with (12) and in the third line we used (14).

Now consider the tensor product of the last two qubits and the second register after the application
of the 2nd unitary, U21

x .

22Some insight as to how this works: If the contents of the first and second registers of phase estimation are |z〉
and |y〉 respectively, then the result of phase estimation is simply |z〉 |xzy mod N〉. To see how we can compute xz

mod N efficiently, consider the following example: to can compute 216 efficiently, we only need to do 4 multiplications.
2× 2 to get 22, then 22 × 22 to get 24, then 24 × 24 to get 28, then 28 × 28 to get 216 [4, p 228].

17



1

2

(
|0〉 |0〉 |1〉+ |0〉 |1〉 |x1 mod N〉+ |1〉 |0〉 |x2 mod N〉+ |1〉 |1〉 |x3 mod N〉

)
Temporarily leaving out the factor of 1√

2t
, the result of the Phase Estimation algorithm before

the inverse QFT is

2t−1∑
j=0

|j〉 |xj mod N〉 =

2t−1∑
j=0

|j〉 1√
r

r−1∑
s=0

e2πisj/r |us〉

=

2t−1∑
j=0

|j〉 1√
r

(
e2πij(0/r) |u0〉+ e2πij(1/r) |u1〉 e2πij(2/r) |u2〉 ...e2πij(

r−1
r ) |ur−1〉

)

=
1√
r

2t−1∑
j=0

e2πij(0/r) |j〉 |u0〉+
1√
r

2t−1∑
j=0

e2πij(1/r) |j〉 |u1〉+ ...
1√
r

2t−1∑
j=0

e2πij(
r−1
r ) |j〉 |ur−1〉

The inverse QFT acts on each sum linearly. Comparing each sum with (8), we see that the inverse
QFT will give an equal superposition of all the possible phases in the first register: 0, 1r ,

2
r , ...

r−1
r .

The result of the Phase Estimation algorithm is therefore

1√
r

(
| 0̃
r
〉 |u0〉+ | 1̃

r
〉 |u1〉+ | 2̃

r
〉 |u2〉+ ... |

˜r − 1

r
〉 |ur−1〉

)
(15)

Thus, a measurement of the first register will give an approximation to (s/r) accurate to 2L+ 1
bits, with a probability of error less than ε. Increasing the number of bits in the first register can
put a very low upper-bound on the error, so at the end of the Phase Estimation algorithm, we can
expect to have an approximation to (s/r) for some s ranging from 0 to r − 1.

Using the classical continued fractions algorithm, we can find a reduced fraction form of (s/r)
in O(L3) arithmetical operations [4, p 229]. Let’s refer to our reduced fraction approximation as
(s′/r′).

If s and r and co-prime, then the reduced fraction’s denominator r′ will match with r. We can
check if it’s correct by checking if xr

′ ≡ 1 mod N . If the test fails, the most likely result is that s
and r share some common factors. That means r′ is some factor of r.

If we repeat the process for the same x and end up with another pair (s′′/r′′), there’s some
probability that s′′ and s′ are co-prime 23. If this is the case, the LCM of r′ and r′′ (given by their
product divided by their gcd) will give the order r that we are looking for [4, pp 226-229].

Thus, at the end of all this, we are left with an accurate estimation of the order r of an integer
x modulo N . The computation uses O(L3) gates or operations, and so it is polynomial in the input
size. Given the order, we can solve the factoring problem efficiently using the classical reduction
algorithm from section 1.

2.5 An example: N = 21

Let’s factor N = 21 = 3 × 7 using Shor’s algorithm. N will fail the two steps of Shor’s algorithm
in the overview, so we choose a random element x from 0 to N − 1. Suppose we choose x = 10
and compute the gcd. As expected, x is co-prime with N so we continue with the Order-finding
algorithm. In binary N = 10101, so L = 5. Choosing ε = .25, we get t = 13 qubits in the first
register.

23One can bound this probability a number of ways. One lower-bound is p(gcd(s′, s′′) = 1) ≥ 1/4 [4, p 231].

18



The result of phase estimation before the inverse QFT is 1√
2t

∑213−1
j=0 |j〉 |xj mod N〉 =

1√
213

(|0〉 |1〉+ |1〉 |10〉+ |2〉 |16〉+ |3〉 |13〉+ |4〉 |4〉+ |5〉 |19〉+ |6〉 |1〉+ |7〉 |10〉 ...) (16)

To simplify the application of the inverse QFT, we assume that the second register is measured24

to be 16. So the final result of phase estimation is

U†QFT

√
6

213
(|2〉+ |8〉+ |14〉+ |20〉 ... |8186〉) (17)

We used MATLAB to complete the computation, generating the probability distribution for the
result of measuring the first register 25. The most probable results of measurement are 0, 1365,
2731, 4096, 5461, and 6827. Suppose we measured 1365. The algorithm would interpret this as
the fraction 1365/213 and the continued fractions algorithm would return 1/6 (which is equal to
1365/213 to an 11-bit approximation). We see that r′ = 6 gives the order of 10 modulo 21. As
expected, r is even and 10r/2 ≡ 103 ≡ 13 6= −1 mod 21. We are guaranteed a non-trivial factor in
computing gcd(12, 21) and gcd(14, 21). The first computation gives 3 and the second gives 7, the
prime factors of 21.

Appendix

A. Algorithm Analysis

How do we judge the efficiency of an algorithm for solving a particular problem? First, we need
a definition of cost. Cost is the consumption of some valuable resource. The valuable resource
could be time, number of gates, number of operations, memory, energy, etc. An efficient algorithm,
then, minimizes cost. For the quantum algorithms used in this paper, the resource is the number of
quantum gates.

Since an algorithm is a sure-fire series of steps to get from some input to an answer, the cost of an
algorithm is a function of the input only. To simplify matters, we consider the cost of an algorithm
in terms of some dimension of the input. For example, input size. Note that for a particular input
size there could be a lot of variation in the cost. A certain sorting algorithm could take advantage
of when a list is mostly sorted and be less costly than it would be on an arbitrary input of the same
size. Therefore, we are usually concerned with worst case performance.

24This can be assumed from the Principle of Implicit Measurement which says any unterminated wires can be taken
as measured [4, p 187]. The second register has nothing done to it after (15), so it is unterminated.

25Code in appendix

19



Suppose f(n) represents the cost of an algorithm on an input of size n. We say that

f(n) ∈ O(g(n)) ⇐⇒ ∃c, no | ∀n > no, f(n) ≤ c g(n) (18)

The equation above gives a large n asymptotic limit on the cost, f(n), of computing the algorithm
on input size n. It gives an upper-limit. All polynomial functions p(x) are in O(2n). This is because
an exponential function on n will always eventually outgrow a polynomial function on n.

An algorithm is usually referred to as efficient if ∃k | f(n) ∈ O(nk) where k is some positive
integer. Any polynomial or sub-polynomial function (log n,

√
n, etc.) on n is efficient under that

criteria. Problems for which an efficient algorithm does not yet exist are usually referred to as hard
or intractable [4, Ch 3].

B. Proving the Sum of Equally Spaced Phases in the Complex Plane is 0

Statement:
∑N−1
k=0 e

2πi(n−m)k
N = Nδmn

Proof: The case where n = m is trivial, so we consider the case where n 6= m. The proof uses

the geometric sum formula. Let s = 1 + e2πi(n−m)/N +
(
e2πi(n−m)/N

)2
+ ...

(
e2πi(n−m)/N

)N−1
. Note

that s is equal to the left hand side of the statement above. By the formula for the finite geometric

sum, s =
1−(e2πi(n−m)/N)

N

1−e2πi(n−m)/N = 1−e2πi(n−m)

1−e2πi(n−m)/N . Since n −m ∈ Z, the numerator is zero. Also, since

n 6= m, 0 < |n−m| < N and so the denominator is non-zero (recall that |m〉 and |n〉 are basis states
labeled from 0 to N −1). Therefore, we have the result that the LHS is N when n = m and 0 when
n 6= m. �

C. Chinese Remainder Theorem

The Chinese Remainder Theorem says that the set of equations

x ≡a1 mod m1

x ≡a2 mod m2

...

x ≡an mod mn

where the mi are positive integers that are co-prime with each other has a solution for x.
Proof: Define M = m1m2...mn and Mi = (M/mi). Since Mi is co-prime with mi it has
an inverse modulo mi, M

−1
i . Then the solution is

x =
∑n
i=1 aiMiM

−1
i .

To see how his works, plug it into the equations above. For some j,

aj ≡x mod mj

≡
n∑
i=1

aiMiM
−1
i mod mj

≡ajMjM
−1
j mod mj

≡aj mod mj

20



The terms involving Mu, where u 6= j, will be equivalent to zero modulo mj since they are
multiples of mj .

Additionally, we can say that any two solutions x and x′ will be equivalent modulo M . It is clear
from transitivity that

x− x′ ≡ 0 mod mi ∀i

Thus, mi|(x− x′) for all i. Since each of the mi are co-prime, they won’t share any of the prime
factors that make up x − x′, so M |(x − x′). Thus, x − x′ ≡ 0 mod M [4, p 627]. Additionally,
suppose that x is a solution and y ≡ x mod M . Then x ≡ y mod mi ∀i, and by substitution y is
also a solution to the system of equations. From this, it follows that the set of solutions is some
equivalence class of M .

One final thing to note is that there is a bijective mapping between the {{ai}} and the solutions
x modulo M . That is to say, the set {ai} determines a unique solution x modulo M , and the solution
x determines a unique {ai}.

Consider set A, the set of the set of allowed ai in the equations. We constrain aj s.t. 0 ≤ aj ≤
mj − 1.26 Each member of A is a set

{a1, a2, a3...an}

For example, for n = 3 and m1 = 3,m2 = 10,m3 = 7, the following are allowed members of A:

{1, 9, 5}
{0, 0, 0}
{2, 5, 6}

Set A has a total of M elements. This is because there are m1 possible values for a1, m2 possible
values for a2, and so on.

Set B = {0, 1, 2, 3...M −2,M −1}.27 There are M elements of B, so A and B have the same size.
Consider the mapping f that takes an element of A and maps it to the corresponding solution in

B. We know that solutions for the same {ai} differ by multiples of M, so we know such a mapping
will be a function (an element of A will map to one element of B). Using the Chinese Remainder
Theorem, we see that an adequate f is one that maps {ai} to its corresponding solution, subtracting
k multiples of M so the result is between 0 and M − 1.

f({a1, a2, ...an}) =

(
n∑
i=1

aiMiM
−1
i

)
− k{a1,a2,...an}M

We will show that f is injective, and thus f is surjective since it is a function on sets of equal
size. Each distinct element of A maps to a different element of B, so every element of B has to get
mapped to. Therefore, f is a one-to-one correspondence mapping. For every {a1, a2, ...an} in the
system of equations, there is a corresponding x and vice versa.

We need to show that if f({a1, a2, ...an}) = f({b1, b2, ...bn}), then ai = bi∀i.
26Any range of mj consecutive integers would work.
27Any set of M consecutive integers would work.

21



Proof:

f({a1, a2, ...an}) = f({b1, b2, ...bn})(
n∑
i=1

aiMiM
−1
i

)
− k{a1,a2,...an}M =

(
n∑
i=1

biMiM
−1
i

)
− k{b1,b2,...bn}M

n∑
i=1

(ai − bi)MiM
−1
i = k′M

n∑
i=1

(ai − bi)MiM
−1
i ≡ k′M mod mj

aj − bj ≡ 0 mod mj

Since 0 ≤ aj , bj ≤ mj − 1, aj = bj . �

2.6 D. Calculating the Inverse QFT on a vector

We used the following code to generate the figure in Section (2.5).

%Compute QFT matrix U%
N = 2ˆ13 ;
U = ones (N, N) ;
w = exp(2 ∗ pi ∗ 1 i / N) ;

for j = 1 :N
w j = wˆ( j − 1 ) ;
for k = 1 :N

i f ( k == 1)
U( j , k ) = 1 ;

else
U( j , k ) = U( j , k − 1) ∗ w j ;

end
end

end

U = (1 / sqrt (N) ) .∗ U;

%To compute in v e r s e QFT, we take the ad j o i n t o f U%
inverseU = U’ ;

%Generate input v e c t o r s
s = linspace (2 , 8186 , 1365 ) ;
v = zeros (N, 1 ) ;
for n = s

v (n + 1) = 1 ;
end

v = v / norm( v ) ;

%app ly t rans format ion

22



r e s u l t = inverseU ∗ v ;

%Ca lcu l a t e ampl i tudes
ampl itudes = r e s u l t .∗ conj ( r e s u l t ) ;

f igure
plot (0 : (N − 1) , ampl itudes )
t i t l e ( ’ P r o b a b i l i t y D i s t r i b u t i o n a f t e r Inve r s e QFT’ )
xlabel ( ’ Result o f measurement o f f i r s t r e g i s t e r ’ )
ylabel ( ’ P r o b a b i l i t y o f measurement ’ )

References

[1] “Fields Medalists / Nevanlinna Price Winner.” Fields Medalists / Nevanlinna Price Winner.
Mathunion.org, 1998. Web. 25 Dec. 2015.

[2] “General Number Field Sieve.” Wikipedia. Wikimedia Foundation, 14 Dec. 2015. Web. 25 Dec.
2015.

[3] Landauer, R. “Irreversibility and Heat Generation in the Computing Process.” IBM Journal of
Research and Development IBM J. Res. & Dev. 5.3 (1961): 183-91. Web. 1 Jan. 2016.

[4] Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge: Cambridge UP, 2000. Print.

[5] Pinter, Charles C. A Book of Abstract Algebra. New York: McGraw-Hill, 1982. Print.

[6] Shor, Peter. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer.” ArXiv.org. ArXiv, 25 Jan. 1996. Web. 25 Dec. 2015.

[7] Zyga, Lisa. “New Largest Number Factored on a Quantum Device Is 56,153.” New Largest
Number Factored on a Quantum Device Is 56,153. Phys.org, 28 Nov. 2014. Web. 25 Dec. 2015.

23


