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1 Introduction and Motivation
Discrete quantum systems are indispensable in the study of the solids. Such many-body systems
are described by a set of sites 1...N, each with a local Hilbert space Hi of finite dimension D, and a
Hamiltonian H that acts on the full space H =⊗N

i=1Hi of dimension DN . Often, we are interested
in calculating ground state correlation functions of some observables Oi, such as 〈ψ0|OiO j |ψ0〉,
where |ψ0〉 is the lowest energy state of H. At low temperatures, these correlation functions agree
with their thermal values.

A common feature of quantum many-body systems is locality. This means the Hamiltonian
is a sum of terms, where the operator norm of each term decays with the diameter of the set it is
supported on. The rate at which it decays could be exponential, power law, or, more commonly, k-
local1. In relativity and field theory, locality is often manifest, so that the causal influence of some

1This means that only sites within distance k are coupled together in the Hamiltonian. We will define terms more
precisely in the next section.
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space-time region A is limited to its light-cone. Does this feature emerge in quantum many-body
systems whose Hamiltonians are local in the sense we have described? It is not so clear, as we
know from perturbation theory that a k-local, k > 1, interaction might couple sites arbitrarily far
away in an arbitrarily short amount of time. For example, consider two operators OX ,AY , supported
on far away spacetime regions X , Y , respectively. From the Baker-Campbell-Hausdorff formula
and elementary quantum mechanics, the time evolution of an operator OX is

OX (t) =
∞

∑
n=0

(it)n

n!
[H, ...[H,OX ]...] (1)

where the commutator with H is taken n times. Then, as long as there is a sequence of terms in
the Hamiltonian connecting the two regions, for t 6= 0, it is possible for [OX (t),AY ] 6= 0, even if
ct << dist(X ,Y ) [1].

It turns out, however, that a “light-cone” does emerge, outside of which correlation functions
decay rapidly. The inequalities satisfied by the correlation functions are called Leib-Robinson
bounds, and velocity of “light” the Leib-Robinson velocity. Furthermore, one can show a remark-
able number of other properties of local Hamiltonians using these bounds, such as the protection
of topological order and a form of Goldstone’s theorem. One such application is in proving the
famed Leib-Schultz-Mattis theorem in higher dimensions. We will follow the treatment in [2].

2 A Leib-Robinson bound and proof

2.1 Some Basic Definitions
To talk about locality precisely, we need to introduce a metric for our system. If we can label the
sites of our full Hilbert space 1...N, let dist(i, j) denote the distance between those sites. Then
dist(i, j) satisfies the usual properties of a metric on a metric space, namely that it is non-negative,
zero only when i = j, and satisfies the triangle inequality. For a 1d lattice, commonly referred to as
a chain, we could have in mind dist(i, j) = |i− j|, and in the case of periodic boundary conditions,
dist(i, j) = minn|i− j+ nN|.

Let Λ = {1, ...N} refer to all the sites in our system, and A,B⊂Λ to subsets of our system. We
define the distance between these regions as

dist(A,B) = min
i∈A, j∈B

dist(i, j) (2)

and the diameter of a region A as

diam(A) = max
i, j∈A

dist(i, j) (3)

We say an operator O is supported on A⊂ Λ if

O = IΛ\A⊗PA (4)

where IΛ\A is the identity on sites not in A, and PA acts on the sites in A. We may sometimes say O
is “only supported” on A to mean that A is the minimal set on which O is supported.
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Now, suppose we can write the Hamiltonian as

H = ∑
Z

HZ (5)

where Z ⊂ Λ, and HZ is supported on Z. Then, H is finite-ranged or k-local if

diam(Z) > k =⇒ ||HZ||= 0 (6)

where ||HZ|| is the operator norm2.

2.2 Statement and proof
We will prove a bound on correlation functions between operators AX (t),BY . We will assume that
H is time-independent so the system has time-translation invariance and we don’t need to time
evolve BY . Furthermore, we will assume that the operators HZ that make up H decay exponentially
with their diameter. We are working in the Heisenberg picture so that

AX (t) := eiHtAX e−iHt (7)

Lastly, we consider the bosonic case, so we are bounding the commutator. However, the
fermionic case is identical if we switch the commutator with the anti-commutator. The follow-
ing theorem was first rigorously proved in [3].

Theorem 1. Suppose AX , BY are supported on regions X ,Y , respectively, with dist(X ,Y )> 0. Then

||[AX (t),BY ]|| ≤ 2||AX ||||BY |||X |e−µ dist(X ,Y )
(

e2s|t|−1
)

(8)

for positive constants µ ,s satisfying

∑
X3i
||HX |||X |eµ diam(X) ≤ s < ∞ ∀i ∈ Λ (9)

Proof. First note that this theorem applies for all systems defined on finite graphs with finite-ranged
or exponentially decaying interactions. The thermodynamic limit can be performed by taking N to
infinity, but ought to be done carefully.

First, we can discretize the time evolution in steps of ε = t/N′, and tn = εn.

||[A(t),B]||− ||[A(0),B]||=
N′−1

∑
n=0

ε
||[A(tn+1),B]||− ||[A(tn),B]||

ε
(10)

Now we want to bound the numerator in the above expression. First note that we can rewrite the
first term in the numerator as [A(tn+1),B] = [eiHtnA(ε)e−iHtn ,B] = eiHtn [A(ε),B(−tn)]e−iHtn . By
a similar argument, [A(tn),B] = eiHtn [A,B(−tn)]e−iHtn . Furthermore, multiplication by a unitary
cannot change an operator’s norm. Using these two facts and a triangle inequality, we can expand
numerator in powers of ε . First, we’ll define IX as the terms in the Hamiltonian whose support
intersects with X i.e.

2For example, for HZ hermitian, ||HZ ||= maxψ ,|ψ|=1 |HZψ|.
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IX = ∑
Z:Z∩X 6=φ

HZ (11)

Then, following the algebra in [2], we can bound the change in the norm of the commutator
over time. We can then take ε→ 0, N′→∞, and take the sum to an integral. Of course, this is only
valid if HZ(t) is a continuous function of t. This is easy to verify for most cases.

||[A(tn+1),B]||− ||[A(tn),B]||= ||[A(ε),B(−tn)]||− ||[A,B(−tn)]|| (12)

= ||[A+ iε [H,A],B(−tn)]||− ||[A,B(−tn)]||+O
(
ε

2) (13)

= ||[A+ iε [IX ,A],B(−tn)]||− ||[A,B(−tn)]||+O
(
ε

2) (14)

= ||[eiεIX Ae−iεIX ,B(−tn)]||− ||[A,B(−tn)]||+O
(
ε

2) (15)

= ||[A,e−iεIX B(−tn)eiεIX ]||− ||[A,B(−tn)]||+O
(
ε

2) (16)

≤ ε||[A, [IX ,B(−tn)]]||+O
(
ε

2) (17)

≤ 2ε||A||||[IX ,B(−tn)]||+O
(
ε

2) (18)

||[A(t),B]||− ||[A(0),B]|| ≤ 2||A||
N′−1

∑
n=0

ε||[IX ,B(−tn)]||+O
(
ε

2) (19)

≤ ∑
Z:Z∩X 6=φ

N−1

∑
n=0

ε||[HZ(tn),B]||+O
(
ε

2) (20)

||[A(t),B]||− ||[A,B]|| ≤ 2||A|| ∑
Z:Z∩X 6=φ

∫ |t|
0

ds||[HZ(s),B]|| (21)

The remainder of the proof is somewhat tedious and not particularly instructive, so we will
sketch it in broadly instead. Interested readers can read the argument in [4]. The rest of the proof
goes as such: first, notice that if we divide the Leib-Robinson bound by ||AX ||, the RHS is totally
independent of both AX . This means we can take the supremum of the quantity on the LHS divided
by ||AX ||.

CB(X , t) := sup
A∈AX

||[A(t),B]||
||A||

(22)

where AX is the set of observables supported on X . The boxed bound above becomes

CB(X , t) ≤CB(X ,0)+ 2 ∑
Z1:Z1∩X 6=φ

||HZ1||
∫ |t|

0
ds1CB(Z1,s1) (23)

The quantity CB(X , t) is bounded above by 2||B||, and is 0 at t = 0 if X ∩Y = φ . Since
dist(X ,Y ) > 0, we can therefore drop the first term in the above equation. We can then apply
the bound iteratively to CB(Z, t).
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CB(X , t) ≤ 2 ∑
Z1:Z1∩X 6=φ

||HZ1||
∫ |t|

0
ds1CB(Z1,0)

+ 22
∑

Z1∩X 6=φ

Z2∩Z1 6=φ

||HZ1 ||||HZ2||
∫ |t|

0
ds1

∫ |s1|

0
ds2CB(Z2,s2) (24)

CB(X , t) ≤ 2||B||

2|t| ∑
Z1∩X 6=φ

Z1∩Y 6=φ

||HZ1||+
(2|t|)2

2! ∑
Z1∩X 6=φ

||HZ1 || ∑
Z2∩Z1 6=φ

Z2∩Y 6=φ

||HZ2||+ ...

 (25)

The first term is bounded by 2||B||(2|t|)∑i∈X exp(−µ dist(i,Y ))≤ 2||B||(2|t|)|X |exp(−µ dist(X ,Y )).
The higher order terms can be similarly bounded.

3 Understanding the bounds physically

3.1 Emergent causal structure

Figure 1: The “light-cone” for information propogation through a one dimensional lattice. The
slope is given by the Leib-Robinson velocity. An operator initially supported on X can be well-
approximated by an operator supported on the red horizontal cross-section a time t later.

The Leib-Robinson bound proved in the last section allows us to introduce the notion of a
light-cone in systems with exponentially decaying interactions (see 1). Any operator AX initially
supported on X ⊂ Λ can be arbitrarily well approximated a time t later by an operator Al

X (t)
supported on sites within a distance l = vLRt of X . The choice of vLR is somewhat arbitrary, one is
vLR = 4s/µ .

To see this, first let Bl(X) = {i ∈Λ : dist(i,X)≤ l} i.e. the set of sites within a distance l of X .
Although AX (t) may have support outside the light cone, we can integrate out its support outside
of it, so that we have an operator Al

X (t) supported only on Bl(X).

Al
X (t) =

∫
dUUAX (t)U† (26)
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where we are integrating over unitaries supported on Λ \Bl(X) with the Haar measure. This is
only supported on Bl(X) since, for any unitary G supported outside of Bl(X)

GAl
X (t)G

† =
∫

dUGUAX (t)U†G† =
∫

d(GU)(GU)AX (t)(GU)† = Al
X (t) (27)

Then, since UAX (t)U† = AX (t)+U [AX (t),U†] and (after normalizing the Haar measure) ap-
plying the Leib-Robinson bound shows Al

X (t) rapidly converges to AX (t) within the cone.

||Al
X (t)−AX (t)||= ||

∫
dUU [AX (t),U†]|| ≤

∫
dU ||[AX (t),U ]|| ≤ 2||AX |||X |e−µl

(
e2s|t|−1

)
(28)

= 2||AX |||X |e−µ(l−2s|t|/µ)
(

1− e−2s|t|
)
≤ 2||AX |||X |e−2µ(l−vLR|t|/2) (29)

We can even rewrite the bound in terms of the Leib-Robinson velocity. Let l = dist(X ,Y ),vLR =

4s/µ , and suppose t ≤ l/vLR, then we have 2st ≤ µl/2, and e−µl(e2st−1)≤ e−µl/2≤ e−µl/2 vLR|t|
l

so that

||[AX (t),BY ]|| ≤
vLR|t|

l
g(l)|X |||AX ||||BY || (30)

where g(l) is a function that decays exponentially in l. This is similar to a result found in
Lorentz-invariant field theories which shows that if the theory is local, then the field-correlator van-
ishes for spacelike displacements, and causality is manifest. The fact that a similar result emerges
in generic quantum many-body systems is fascinating, and even has connections to formulating
quantum gravity in terms of quantum many-body systems [5, 6, 7].

The bound can be made even more tight in the case of finite-range interactions. Let us consider
the transverse field Ising model on a d dimensional cubic lattice. Let X and Y be single-sites
separated by a distance l.

H = −J ∑
<i j>

Sz
i S

z
j +B∑

i
Sx

i (31)

The bound on CB(X , t) becomes a sum over paths starting at X and ending at Y .

||[A(t),B]|| ≤ 2||A||||B||(2|t|)
l

l!
l!

∏
d
i=1(Xi−Yi)!

|J/4|l +O
(

Jd+1
)

(32)

Using techniques from statistical mechanics, one finds in this case that g(l) decays faster than
exponentially (∼ e−al2

) [2].

3.2 Bounds on correlation functions
Another straightforward application of the Leib-Robinson bounds is to ground state correlation
functions i.e. things we can measure experimentally. The theorem and proof can be found in [8].
It says for a quantum lattice with a unique ground state and spectral gap ∆E
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|〈ψ0,AX BY ψ0〉−〈ψ0,AX ψ0〉〈ψ0,BY ψ0〉| ≤C||AX ||||BY || (exp(−l∆E/2vLR)+min(|X |, |Y |)g(l))
(33)

where AX ,BY are any operators supported on X ,Y ⊂Λ, l = dist(X ,Y ), and C is some constant.
If there is a ground state sector with exponentially small splitting and a gap above the ground-state
sector

|〈ψa
0 ,AX BY ψ

a
0 〉−〈ψa

0 ,AX P0BY ψ
a
0 〉| ≤C||AX ||||BY || (exp(−l∆E/2vLR)+min(|X |, |Y |)g(l))

(34)
where P0 = ∑a

∣∣ψa
0
〉〈

ψa
0

∣∣ is the projector onto the ground-state sector. The proof can be found
in [8], [2], but will be left out for brevity. An application of the theorem to the transverse field Ising
model can be obtained in the limit B << J, when there are two nearly-degenerate ground states∣∣ψ±0 〉 (indexed by their eigenvalue ∏

N
i=1 2Sx

i ) and a gap.∣∣ψ±0 〉= 1
2
(|... ↑↑↑ ...〉± |... ↓↓↓ ...〉) (35)

The matrix representation M of Sz
i in the ground state sector can be written in terms of the order

parameter m as

M =

(
0 m
m 0

)
(36)

Here, m is the magnetization per site. For B = 0, m = 1/2, and for B > 0, m > 0 in the
ordered phase. Then, 〈ψ+

0 ,Sz
i P0Sz

jψ
+
0 〉= m2, and so 〈ψ+

0 ,Sz
i S

z
jψ

+
0 〉 is exponentially close to m2 as

dist(i, j)→ ∞.

4 The Leib-Schultz-Mattis Theorem in arbitrary dimensions
The bounds derived in the previous sections can be applied to derive a type of Goldstone’s theorem
[9], and also to show the stability of topological order [10]. For brevity’s sake, we will restrict
ourself to just one other remarkable consequence of locality: the Leib-Schultz-Mattis theorem. The
theorem is about quantum systems of spins with certain symmetries and it implies they are gapless.
In class, we talked mainly about systems with gapless excitations (e.g. plasmons, phonons, etc.).
Whether a system is gapless or not has significant physical ramifications, determining, for example,
if it’s a metal or an insulator.

To prove the Leib-Schultz-Mattis (LSM) theorem, we must first define the quasi-adiabatic con-
tinuation operator. We will use the continuation operator to traverse paths in paramater space. The
key idea here is that continuing along gapped paths keeps us in the ground state.

4.1 Quasi-Adiabatic continuation
Suppose we have a parameter dependent local Hamiltonian3 Hs = ∑Z HZ(s). We will assume
HZ(s) is differentiable. The transverse field Ising model is an example, with the parameter s =

3For example, it may be exponentially local, so that the bound we derived is applicable.
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B/J. If the system has a unique ground state ψ0(s) and a non-zero gap ∆E(s) > ∆E > 0∀s,
then we can define a local operator, called the quasi-adiabatic continuation operator, such that
iDsψ0(s) = ∂sψ0(s) (or iDsψ0(s) ≈ ∂sψ0(s), depending on what we want to prove).

Given Hs, an operator O, and a function F(t), define the quasi-adiabatic continuation oper-
ator by

iD(Hs,O) :=
∫

F(∆Et)exp(iHst)Oexp(−iHst)dt (37)

F will satisfy different properties depending on whether we want the exact continuation op-
erator or the approximate one. To ensure D is hermitian, F is an odd function of time. Then,
of course, its Fourier transform F̃(ω) = 0 at ω = 0. Given a parameter dependent Hamiltonian
Hs = ∑Z HZ(s), define

Ds := D(Hs,∂sHs) = ∑
Z

DZ
s (38)

The exact adiabatic continuation operator Ds, which is the one we will need for LMS theorem,
has that F̃(ω) = −1/ω for |ω| ≥ 1. Now we can check that Ds satisfies the required property. In
the second line, we insert the identity. In the third line, we use the eigenstate property of ψ0(s). In
the fourth line, we use that F̃(ω) = −1/ω for |ω| ≥ 1. The last equality is a well-known result
from ordinary perturbation theory.

iDsψ0(s) =
∫

F(∆Et)exp(iHst)(∂sHs)exp(−iHst)dtψ0(s) (39)

= ∑
i=0
|ψi(s)〉〈ψi(s)|

∫
F(∆Et)exp(iHst)(∂sHs)exp(−iHst)dtψ0(s) (40)

= ∑
i=0
|ψi(s)〉〈ψi(s), (∂sHs)ψ0(s)〉

∫
F(∆Et)exp(i(Es−E0)t)dt (41)

= ∑
i6=0

|ψi(s)〉〈ψi(s), (∂sHs)ψ0(s)〉
E0(s)−Ei(s)

= ∂sψ0(s) (42)

Equivalently, if P0(s) is the projector onto the ground state sector (potentially degenerate),

∂sP0(s) = i[Ds,P0(s)] (43)

Using the Leib-Robinson bounds, we can determine the locality of Ds. This fact is essential to
the proof of the LSM theorem. To prove this, we will require that F decays superpolynomially4,
and that ||HZ(s)||, ||∂sHZ(s)|| decay superpolynomially in diam(Z). This is obviously satisfied by
all finite-ranged Hamiltonians. To prove the locality of Ds, first consider each term DZ

s .

DZ
s =

∫
F(∆Et)(∂sHZ(s))(t)dt (44)

As we showed earlier, (∂sHZ(s))(t) can be supported by an operator Ol supported on Bl(Y )
where Y is the support of ∂sHZ and l ∼ vLRt. This is the reason why DZ

s is local. More formally,

4You might be wondering if such a function F(t) exists! It does, in fact, though we will leave its existence proof
to those more interested in the mathematical details.
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DZ
s =

∫
F(∆Et)O∞dt =

∞

∑
l=0

∫
F(∆Et)(Ol−Ol−1)dt (45)

Now, evidently, DZ
s is a sum of terms DY (s) that decay superpolynomially in Y . Thus, the full

operator can be written as a sum of terms whose norm decays superpolynomially in the size of
their support.

Ds = ∑
Y

DY (s) ||DY (s)|| ∈O
(
diam(Y )−n)∀n (46)

4.2 Proof in arbitrary dimensions
We are now ready to prove the Leib-Schultz-Mattis theorem. It was first proven in [11], though the
more recognizable form of it, considering a system with a U(1) symmetry, appears in [12]. The
full proof of the theorem is involved, and what follows is only intended to be a sketch of the proof,
but the main ideas are present nonetheless. The higher dimensional proof for a system with SU(2)
symmetry is given in [8].

The theorem was first proved in 1961 in the case of a one-dimensional periodic chain [11]. It
bounded the gap at const./L. Extending the proof to higher dimensions has been difficult, namely
because the system can be short-ranged or long-ranged [13]. Essentially, in higher dimensions,
there exist two distinct ways of creating low-energy excitations: in the case of short-range cor-
relations, we can dimerize the system into resonating valence bond states, and then construct a
low-energy state similar to the “twisted” ψLSM in [14]; conversely, in the case of long-range corre-
lations, we have low energy spin-wave excitations. This contrasts the one-dimensional case, where
there is no long range order.

First, we need to define the (hopefully familiar) notion of a conserved charge Q. A Hamiltonian
H has a conserved charge Q if Q = ∑i∈Λ qi, where qi is supported on site i, has integer eigenvalues,
and is bounded ||qi||< qmax, and [H,Q] = 0.

Theorem 2. Let H = ∑Z HZ be an R-local Hamiltonian with a conserved charge Q defined on a
finite dimensional lattice with periodic boundary conditions (PBC) and translation invariance (TI)
in at least one direction and let L be the lattice size in that direction. Further, suppose each term is
bounded by J, i.e. ||HZ|| < J, and that the total number of sites N is bounded by a constant times
a polynomial in L. Define the ground state filling factor ρ by

ρ = 〈ψ0,Qψ0〉/L (47)

Then ρ /∈Z implies either the ground state is degenerate or the gap between the ground state and
first excited state is bounded by

∆E ≤ const. log(L)/L (48)

where the constant only depends on R, J, qmax, and the lattice structure.

Proof. Here’s the idea: we use the existence of a gap ∆E to construct a low energy state orthogonal
to the ground state. If the gap exceeds log(L)/L, then the variational state will have energy lower
than log(L)/L above the ground state, thus proving (by contradiction) that either gap is bounded
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or the ground state is degenerate. The existence of the gap and locality suggest the system’s insen-
sitivity to boundary conditions, and so we form this state by “twisting” the boundary conditions at
x = 0 and x = L/2. This state is referred to as topologically excited, since, as we will see, it has
the same expectation values for all local operators as the ground state.

We begin by defining some quantities and operators that will be useful later in the proof. Let
x(i) denote the coordinate of site i ∈ Λ along the direction with PBC and TI. For example, the
vertical line at x would be denoted as V Lx = {i : x(i) = x} ⊂ Λ. Let QX denote the charge in one
half of the lattice i.e.

QX = ∑
i:1≤x(i)≤L/2

qi (49)

Furthermore, define a parameter dependent family of Hamiltonians

H(θ1,θ2) = ∑
Z

HZ(θ1,θ2) (50)

where

HZ(θ1,θ2) =


eiθ1QX HZe−iθ1QX dist(Z,V L0) ≤ R
e−iθ2QX HZeiθ2QX dist(Z,V LL/2) ≤ R
HZ dist(Z,V L0∪V LL/2) > R

(51)

Since the charge takes integer values, H(0,0) = H(2π ,−2π) = H. Note also that H and
H(θ ,−θ ) share the same spectrum because they’re related by basis change:

H(θ ,−θ ) = eiθQX He−iθQX (52)

This is clear because for HZ that are supported between vertical lines but R away, HZ = eiθQHZe−iθQ =
eiθQX HZe−iθQX , since the charges outside the strip commute with HZ , and if HZ is instead supported
outside the strip a distance R from the vertical lines, e−iθQHZeiθQ = eiθQX HZe−iθQX .

We will now use the adiabatic continuation operator to continue along three paths in parameter
space. These paths are actually closed loops when we think of the parameter space as being a torus,
and the first two are the generators of the fundamental group of the torus. Note that since all paths
start at (0,0), all of the initial Hamiltonians are gapped, but this does not necessarily mean they
remain gapped! Only for path three will the Hamiltonian unequivocally remain gapped, because
the spectrum is invariant along this path.

1. θ1 evolves from 0 to 2π and θ2 = 0. We are evolving Hθ = H(θ ,0), the path is generated
by D1

θ
, and the unitary relating the initial and final states is W1 = exp

(∫ 2π

0 dθD1
θ

)
(with W1

θ -ordered).

2. θ2 evolves from 0 to 2π and θ1 = 0. We are evolving Hθ = H(0,−θ ), the path is generated
by D2

θ
, and the unitary relating the initial and final states is W2 = exp

(∫ 2π

0 dθD2
θ

)
(with W2

θ -ordered).

3. θ1 =−θ2 = θ evolves from 0 to 2π . We are evolving Hθ = H(θ ,−θ ), the path is generated
by Dθ , and the unitary relating the initial and final states is W = exp

(∫ 2π

0 dθDθ

)
(with W

θ -ordered).
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If the continuation operators are local, and the gap is sufficiently big, then W1W2, W2W1, and W
are all close in their operator norm.

W1W2 ≈W2W1 ≈W (53)

The idea is this: W1 only affects sites near V L0, and is weak outside of a width inversely
proportional to the energy gap ∆E. The inverse of the gap sets a length scale for decay, and thus
if we want to approximate W1 up to a distance L/4 of the line, 1/∆E must be small compared
to L. We find that the gap needs to be at least f (l)/L, where f (l) grows more slowly than any
polynomial, in order for the above approximation to be valid.

Finally, we are ready to construct our variational state with energy lower than the supposed
gap.

ψ1 =W1ψ0 (54)

The energy of this state is close to E0, because either HZ is far from V L0, in which case

〈W1ψ0,HZW1ψ0〉 ≈ 〈ψ0,HZψ0〉 (55)

or it is close to V L0 and so it is far from V LL/2, and so HZ approximately commutes with W2

〈W1ψ0,HZW1ψ0〉 ≈ 〈W2W1ψ0,HZW2W1ψ0〉= 〈Wψ0,HZWψ0〉= 〈ψ0,HZψ0〉 (56)

Since we did not assume the form of HZ , we have also shown here why the excited state is
referred to as topological–they are indistinguishable by local operators. Now, we have left to show
that ψ1 is orthogonal to the ground state. We will show this by considering its eigenvalue under
the translation operator T . Suppose 〈ψ0,T ψ0〉= z. Then

〈ψ0,W †
1 TW1ψ0〉= z〈ψ0,W †

1 (TW1T †)ψ0〉 (57)

≈ z〈ψ0,W †
2 W †

1 (TW1T †)W2ψ0〉 (58)

= zw∗〈ψ0, (TW1T †)W2ψ0〉 (59)
≈ zw∗w′ (60)

= z〈ψ0, exp

2πi ∑
i:x(i)=1

qi

ψ0〉 (61)

= z〈ψ0, exp(2πiQ/L)ψ0〉 (62)
= zexp(2πiρ) 6= z (63)

• In the first equality, we insert the identity T †T .

• In the second equality, we use that W2 approximately commutes with TW1T †, which is the
same as W1 but shifted over one.

• In the third equality, we let w be the eigenvalue for W ≈W1W2 (we know ψ0 is an eigenstate
because 〈ψ0,W †HWψ0〉= 〈ψ0,Hψ0〉).

• In the fourth equality, we let w′ refer to the eigenvalue for (TW1T †)W2.
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• In the fifth equality, we use the explicit values of w and w′.

• In the sixth line, we use translation invariance to rewrite the exponential in terms of the
charge Q.

• In the seventh, we plug in the definition of ρ and we use that its not an integer.

Let us summarize what we have done. We assumed the initial system, H = H(0,0), had a gap.
Then, assuming the gap was big enough at θ = 0, we constructed the low-energy topologically
excited state which is orthogonal to the ground state. This is similar to the degenerate ground state
sector in the Majumdar-Ghosh model. So, either the ground state is unique and the gap is bounded
by const. logL/L, or it is degenerate.

5 Concluding remarks and new horizons
The study of lattice models with local Hamiltonians is indispensable to the study of solids, and
much of what we’ve studied here can be applied to a wide range of models (e.g. tight-binding
model, Heisenberg model, transverse field Ising model) describing solids. Statements about the
existence (or lack thereof) of gaps in the spectrum of a Hamiltonian, such as LSM theorem, can
tell you whether the corresponding system is an conductor or an insulator.

The Leib-Robinson bounds reveal much of the physics of quantum lattices. They can be used
to uncover a sort of causal structure in these lattices. This causal structure can be used to prove a
number of remarkable theorems regarding quantum lattices. One such theorem is the Leib-Schultz-
Mattis theorem, which was originally proven in 1d. The bounds provide a proof that works for all
finite dimensional lattices–a major achievement! The bounds also show that the size of the gap
sets a length scale over which correlations decay exponentially. The bigger the gap, the faster
the ground state connected correlation function of two operators will decay. In part due to the
generality of the arguments in [2], the machinery we developed can be put towards understanding
generic quantum many-body systems, so long as they are local in some sense. For these reasons
and others, the Leib-Robinson bounds continue to be relevant in the frontiers of research and may
even provide insight into new discoveries.

The commutators of local hermitian operators, such as in theorem 1, are effective for character-
izing the “butterfly effect” in quantum many-body systems [1]. A quantum many-body system is
said to be chaotic if the commutator of any two, spatially seperated local operators grows large and
remains so after the “scrambling time.” For example, for large N gauge theories with N2 degrees
of freedom at each site, we find for short times

−〈[W (x, t),V (0)]2〉β =
K
N2 eλL(t−x/vB)+O

(
N−4) (64)

where vB is the butterfly velocity.
The relationship between vLR and vB is an active area of research. The form of the bound in

theorem 1 is in terms of microscopic quantities and hence it is UV-sensitive and state-independent.
A tighter bound for the low-energy physics might be obtained by looking at the matrix elements
of the commutator between the low-lying states, such as in the above equation. We can therefore
view the butterfly velocity as the low-energy Leib-Robinson velocity, but its usefulness hardly stops
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there. Even high-energy scattering in the vicinity of black holes has been shown to be connected
to quantum chaos [15].

The notion of the light-cone in quantum-many body lattice systems has also inspired work
in quantum gravity. Much effort has been made in tensor network formulations of space-time to
understand how insertions of local operators into a tensor network representing some d dimenion-
sional space-time affects probes some time later. By studying commutators, one can show that
these structures also exhibit an emergent causal structure, similar to the one studied in this report
[5, 7].

There is also work on the quantum information side of things. The stability of topologically
ordered phases to perturbations in the Hamiltonian is tied to the prospect of quantum computers.
Suppose we start off with a Hamiltonian H0 with a topologically non-trivial phase separated by a
gap (e.g. the toric code, Levin-Wen model, etc.) and we add a perturbation V whose strength is
parameterized by s

H = H0 + sV (65)

Does the model remain in the topologically non-trivial phase as we vary s? Does the gap remain
open? For ||V ||, L finite, it can be easily shown that the gap remains open up to some ball around
s = 0 [2]. Recent work using the quasi-adiabatic continuation operators [16, 17] provide bounds
which are uniform functions of L.

However, we still know relatively little about topological entanglement entropy in the presence
of local perturbations. Topological entanglement entropy is a constant in the entanglement entropy
that depends only on the topology of the space on which the Hamiltonian acts. Understanding the
behavior of entanglement entropy in various lattice models might help to clarify the nature and
stability of topological phases.

The growth of entanglement entropy is also useful in understanding the many-body localization
(MBL) transition. Much recent work has been done in understanding the growth of out-of-time-
order-correlators (OTOCs) [18, 19] to determine how and if systems thermalize. Similarly, the
entanglement entropy of many-body systems can be used as an order parameter in the MBL-ETH
transition [20]. Perhaps using ideas or techniques highlighted in this report could bring us closer
to understanding many-body localization through a fuller understanding of how the entanglement
entropy evolves in lattice models.
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