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In this paper we explore the interplay between Lie groups, symmetry and quantum error correction
in the Eastin-Knill theorem [1]. The basic idea is that the generators of the group of logical, unitary
product operators are the sum of local operators which can themselves be expanded in terms of
the error operators in a local, quantum error correcting code and thus act trivially on the code
space. This implies that the number of logical operators that can be implemented by a transversal
gate set is finite, and thus cannot be universal. Furthermore, any finite code that is covariant with
respect to some continuous symmetry cannot correct arbitrary single qubit errors, because logical
charge information leaks into the environment [2]. Infinite codes lack these restrictions. Eastin-Knill
theorem has a profound significance to fault-tolerant quantum computing and in physical systems
where symmetry and quantum error correction exists.

I. INTRODUCTION

The paradigm for storing and protecting quantum
memory is a quantum error correcting code, which en-
codes data into highly entangled states that are robust
against local measurements and noise. Quantum error
correcting codes (see [6, 7] for a gentle introduction) oc-
cur across physics, such as in topological phases of matter
[3], holographic quantum gravity [4], random unitary cir-
cuits with measurement [5], and they are a cornerstone of
quantum computing. In addition to being able to correct
quantum errors, we also must be able to limit the pro-
liferation of quantum errors through unitary evolution.
This can be achieved using transversal gates, which are
inherently fault tolerant. Unfortunately, the Eastin-Knill
theorem [1] precludes the possibility of such gates being
universal. The primary result in the original paper [1] is
that a local quantum error correcting code, i.e. a quan-
tum code that can correct an arbitrary single-qubit error,
cannot have a universal, transversal gate set.

The basic idea of error correction, both classical and
quantum, is to use redundancy to protect information
from erasure. The logical bits, which are used for com-
putation, are encoded into a subspace, called the code
space, of a larger many-body quantum system. The error
correcting code specifies which physical states correspond
to which assignment of logical bits and provides a scheme
for how to correct errors like a bit flip or a measurement
on a single qubit. Usually, the way this works is through
a syndrome measurement to determine the type of error,
and then a unitary to correct the error that was done.

Errors which act non-trivially in the code-space are
usually called undetectable or logical errors. Errors
which do nothing inside the code space are called de-
tectable because they can be corrected by measuring the
projector P onto the code space. Thus, an error E is
detectable if and only if

PEP ∝ P

Quantum error correcting codes (QECC) are usually de-
signed to handle local, independent errors. However, an

error can spread throughout the system through unitary
evolution (i.e. computation) on the logical bits. One
way to prevent the spread of errors is through transver-
sal gates. Suppose that our QECC is broken up into
code blocks, each one consisting of one or several qubits,
such that independent, local errors can be corrected in
each individual block. Furthermore, suppose that each
code block is partitioned into subsystems, labeled 1...n,
such that the computational gates applied to our system
only couple the same partition between different code
blocks e.g. partition i in each code block. Such op-
erators, called transversal, are inherently fault tolerant
because errors on different code blocks are treated inde-
pendently and transversal gates can only spread errors
between partitions of different code blocks. Practically,
they don’t actually increase the number of errors.

Suppose we can implement transversal gates to arbi-
trary accuracy. Given a local-error-correcting quantum
code, can any logical operator on the code space be imple-
mented to arbitrary accuracy using a finite composition
of transversal gates? The answer turns out to be no, be-
cause of the structure of the Lie group of transversal uni-
tary operators [1]. We will structure the paper as follows:
in II, we present the argument provided in the original
paper [1], which proves that the set of unitary, logical
product operators can only implement a finite number of
gates on a local, quantum error correcting code, corre-
sponding to its connected components; in III, we explore
some ways to circumvent the theorem and its connections
to symmetry; in IV, we conclude the article.

II. PROOF OF EASTIN-KNILL THEOREM

The proof relies on the fact that the group of logical
unitary product operators, G, only describes a finite num-
ber of inequivalent, or distinct, logical operators on the
QECC, and thus cannot approximate the infinite set of
logical operators.

Consider a composite quantum system, Q, composed
of n physical subsystems, where the jth subsystem has di-
mension dj . The dimension of the entire quantum system
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is D =
∏n
j=1 dj . Let T denote the group of all unitary

product operators, i.e. operators that decompose into a
tensor product of single-site unitaries.

T = {V ∈ U(D)|V =

n⊗
j=1

Vj , Vj ∈ U(dj)} (1)

where U(d) is the unitary group on a d-dimensional
quantum system. Since U(d), with d finite, is a compact
Lie group, so is T , which is simply a direct product of
compact Lie groups. The set of logical unitary operators
is defined as a subset of unitary operators that preserve
the code space. Therefore, if P is the projector onto
the code space, and U is a logical unitary operator, then
(1−P )UP = 0. It turns out that the set of logical unitary
operators LP is a group, and that its intersection with a
unitary Lie group forms a Lie subgroup. The proof is in
the appendix.

With these lemmas, we are ready to move on to the
main result, which states that logical unitary product op-
erators are not universal for any non-trivial, local QECC.
By the previous result, we know that G, the set of logical
unitary product operators, is a Lie subgroup of T , since

G = T ∩ LP (2)

It turns out that for non-trivial, local QECCs, G can
only do so much on the logical state because the gener-
ators of the connected component of the identity can be
expanded in terms of local, detectable errors that leave
the code space invariant. Let C be the connected compo-
nent containing the identity in G. C is a connected Lie
group and a general element C ∈ C can be written using
the exponential map on an element c of the Lie algebra.
Furthermore, since C is a logical operator,

0 = (1− P )eiεcP

Since this holds for all ε, we know that c is also a logical
operator.

0 = lim
ε→0

(1− P )
eiεc − I
iε

P = (1− P )cP

Since C is a Lie subgroup of T , its Lie algebra is a sub-
algebra of the algebra for T . Since T is the Lie group
of unitary product operators, its Lie algebra consists of
local hermitian operators, and so c can be expanded in
a sum of local hermitian operators. But, by assumption,
our system is a local QECC. Therefore, there is a com-
plete set of error operators that spans any local hermitian
operator, and so

PcP ∝ P

Combining this with the fact that c is a logical opera-
tor, we get that c keeps the code space invariant.

cP = PcP ∝ P

Since c is unitary on P and hermitian, the constant
of proportionality must be one or minus one. Thus any
element c of the Lie algebra of C acts trivially on P .
Hence, thinking about the connected components of the
logical, unitary product operators Q = G/C, there are
only as many distinct operators as the cardinality |Q|.
Since G is a compact Lie group, it can only have a finite
number of connected components so |Q| < ∞. Hence,
logical unitary product operators can only implement
a finite number of distinct computational gates in this
QECC, and therefore cannot be universal. Furthermore,
since transversal gates only act on the specific subsys-
tems across code blocks, they are unitary, logical prod-
uct operators on the transversal components. Hence no
non-trivial, local QECC can have a universal, transversal
gate set.

III. CIRCUMVENTIONS AND EXTENSIONS

There are different directions that one may try to cir-
cumvent the theorem, for example, by relaxing unitarity,
transversality, or universality. Another loophole could
be to make our Hilbert space infinite-dimensional. We
can either increase the on-site degree of freedom d or
the number of qudits N . This leads to an approximate
Eastin-Knill theorem [2], which says how many physical
qubits are needed per logical qubit to correct arbitrary
error to some fixed accuracy. Thus, we can implement
a universal, transversal gate set in a local, quantum er-
ror correcting code if we encode each logical bit in an
exponentially diverging number of physical bits as the
accuracy approaches one.

The Eastin-Knill theorem may be viewed as a restric-
tion on codes covariant with respect to some continuous
symmetry group G that acts as a product of local sym-
metries. Covariant means performing the symmetry on
the physical bits is the same as performing it on the log-
ical bits. Using a similar argument to the one presented
in II, it can be shown that no perfect, covariant, finite-
dimensional, local QECC exists [8]. Essentially, the code
must encode an eigenstate of the logical charge operator.
Thus, by measuring the physical charge, the environment
can learn about the charge information of the code state.
Since logical charge information is leaking into the en-
vironment, the code cannot be perfect. Crucially, we
can construct perfect, covariant local QECC if we allow
infinite dimensions–this loophole is indeed exploited by
holographic theories of quantum gravity [2]. A symmet-
ric code’s accuracy relies on small charge fluctuations in
the (encoded) logical space, large charge fluctuations on
the individual physical subsystems, and a large number
of physical qubits [2].
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IV. CONCLUSION

Though the Eastin-Knill theorem appears as a tech-
nical statement about a certain class of quantum gates,
it has profound importance for quantum computer scien-
tists and physicists alike. It rules out transversal gates as
a universal gate set for fault-tolerant quantum comput-
ing, because it is incompatible with error correction. It
also highlights how two attractive aspects of nature, sym-
metry and quantum error correction, are at odds with
each other. Indeed, the Eastin-Knill theorem explains
why it should be no surprise that one, namely symmetry,

seems more ubiquitous than the other, quantum error
correction, which seems only to occur naturally in rather
extreme regimes. Like all no-go theorems, it begs the
question: in what ways can we utilize, generalize, and
circumvent it?
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Appendix A: Properties of logical unitary operators

Lemma. The set of logical unitary operators LP form
a group under multiplication. Furthermore, the logical
operators contained in a Lie group of unitary operators
form a Lie subgroup.

Proof. First we prove that LP is a group. We may define
this set in terms of the projector onto the code-space P .

LP := {U ∈ U(D)|(1− P )UP = 0} ⊂ U(D) (A1)

From this definition, it is clear that I ∈ LP . Let U, V ∈
LP , then (1 − P )UV P = (1 − P )UPV P = 0, where in
the second step we used that any logical operator satisfies
PV P = V P and in the final step we used the defining
property of logical operators in equation A1. Therefore,

UV ∈ LP , and so the set is closed under multiplication.
Lastly we need to show that LP is closed under inverse.
To show this, first observe that PU†P is the inverse of
PUP in P , so that

(PU†P )(PUP ) = (PU†)(UP ) = P

Using this identity, we are able to show that U ∈ LP
implies U† ∈ LP .

U†P = U†(PUPPU†P ) = U†(PUP )PU†P

= U†UPU†P = PU†P

Now, consider any Lie group of unitary operators A,
and its intersection with LP , B = A∩LP . Since B is the
intersection of two groups it is also a group. Furthermore,
B is a closed set. To see this, note that LP is the pre-
image of a closed set, {0}, of a continuous function,

f : U(D)→ CD
2

, f(U) = (1− P )UP

and therefore it must be closed. Since B is the inter-
section of two closed sets (A is closed since it is a Lie
group) it is also closed. The closed-subgroup theorem
due to Cartan states that closed subgroups of Lie groups
are also Lie groups, hence the logical operators on the
code space form a Lie subgroup.
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